617 research outputs found

    Polyelectrolyte Complex Templated Synthesis of Monodisperse, Sub-100 nm Porous Silica Nanoparticles for Cancer Targeted and Stimuli-Responsive Drug Delivery

    Get PDF
    Porous silica nanoparticles (PSiNPs) have long attracted interest in drug delivery research. However, conventional synthesis methods for sub-100 nm, functionalised PSiNPs typically give poor monodispersity, reproducibility, or involve complex synthetic protocols. We report a facile, reproducible, and cost-effective one-pot method for the synthesis of cancer targeting and pH responsive PSiNPs in this size range, without the need for post-synthetic modification. This was achieved by using monodisperse L-arginine (Arg)/ poly(acrylic acid) (PAA) polyelectrolyte complexes (PECs) as soft templates for silane hydrolysis and condensation. Highly uniform PSiNPs with tunable size control between 42 and 178 nm and disordered pore structure (1.1–2.7 nm) were obtained. Both PAA and Arg were retained within the PSiNPs, which enabled a high doxorubicin hydrochloride (Dox) loading capacity (22% w/w) and a 4-fold increase in drug release under weakly acidic pH compared to physiological pH. The surface presentation of Arg conferred significantly higher intracellular accumulation of Arg/PAA-PSiNPs in patient-derived glioblastoma cells compared to non-tumorigenic neural progenitor cells, which effectively translated to lower IC50 values for Dox-loaded Arg/PAA-PSiNPs than non-functionalised PSiNPs. This work brings forward new insights for the development of monodisperse PSiNPs with highly desirable built-in functionalities for biomedical applications

    The pan-PPAR agonist lanifibranor reduces development of lung fibrosis and attenuates cardiorespiratory manifestations in a transgenic mouse model of systemic sclerosis

    Get PDF
    Background: The TβRII∆k-fib transgenic (TG) mouse model of scleroderma replicates key fibrotic and vasculopathic complications of systemic sclerosis through fibroblast-directed upregulation of TGFβ signalling. We have examined peroxisome proliferator-activated receptor (PPAR) pathway perturbation in this model and explored the impact of the pan-PPAR agonist lanifibranor on the cardiorespiratory phenotype. Methods: PPAR pathway gene and protein expression differences from TG and WT sex-matched littermate mice were determined at baseline and following administration of one of two doses of lanifibranor (30 mg/kg or 100 mg/kg) or vehicle administered by daily oral gavage up to 4 weeks. The prevention of bleomycin-induced lung fibrosis and SU5416-induced pulmonary hypertension by lanifibranor was explored. Results: Gene expression data were consistent with the downregulation of the PPAR pathway in the TβRII∆k-fib mouse model. TG mice treated with high-dose lanifibranor demonstrated significant protection from lung fibrosis after bleomycin and from right ventricular hypertrophy following induction of pulmonary hypertension by SU5416, despite no significant change in right ventricular systolic pressure. Conclusions: In the TβRII∆k-fib mouse strain, treatment with 100 mg/kg lanifibranor reduces the development of lung fibrosis and right ventricular hypertrophy induced by bleomycin or SU5416, respectively. Reduced PPAR activity may contribute to the exaggerated fibroproliferative response to tissue injury in this transgenic model of scleroderma and its pulmonary complications

    Surface topography of hydroxyapatite affects ROS17/2.8 cells response

    Get PDF
    Hydroxyapatite (HA) has been used in orthopedic, dental, and maxillofacial surgery as a bone substitute. The aim of this investigation was to study the effect of surface topography produced by the presence of microporosity on cell response, evaluating: cell attachment, cell morphology, cell proliferation, total protein content, and alkaline phosphatase (ALP) activity. HA discs with different percentages of microporosity (< 5%, 15%, and 30%) were confected by means of the combination of uniaxial powder pressing and different sintering conditions. ROS17/2.8 cells were cultured on HA discs. For the evaluation of attachment, cells were cultured for two hours. Cell morphology was evaluated after seven days. After seven and fourteen days, cell proliferation, total protein content, and ALP activity were measured. Data were compared by means of ANOVA and Duncan’s multiple range test, when appropriate. Cell attachment (p = 0.11) and total protein content (p = 0.31) were not affected by surface topography. Proliferation after 7 and 14 days (p = 0.0007 and p = 0.003, respectively), and ALP activity (p = 0.0007) were both significantly decreased by the most irregular surface (HA30). These results suggest that initial cell events were not affected by surface topography, while surfaces with more regular topography, as those present in HA with 15% or less of microporosity, favored intermediary and final events such as cell proliferation and ALP activity

    A key role for STIM1 in store operated calcium channel activation in airway smooth muscle

    Get PDF
    BACKGROUND: Control of cytosolic calcium plays a key role in airway myocyte function. Changes in intracellular Ca(2+ )stores can modulate contractile responses, modulate proliferation and regulate synthetic activity. Influx of Ca(2+ )in non excitable smooth muscle is believed to be predominantly through store operated channels (SOC) or receptor operated channels (ROC). Whereas agonists can activate both SOC and ROC in a range of smooth muscle types, the specific trigger for SOC activation is depletion of the sarcoplasmic reticulum Ca(2+ )stores. The mechanism underlying SOC activation following depletion of intracellular Ca(2+ )stores in smooth muscle has not been identified. METHODS: To investigate the roles of the STIM homologues in SOC activation in airway myocytes, specific siRNA sequences were utilised to target and selectively suppress both STIM1 and STIM2. Quantitative real time PCR was employed to assess the efficiency and the specificity of the siRNA mediated knockdown of mRNA. Activation of SOC was investigated by both whole cell patch clamp electrophysiology and a fluorescence based calcium assay. RESULTS: Transfection of 20 nM siRNA specific for STIM1 or 2 resulted in robust decreases (>70%) of the relevant mRNA. siRNA targeted at STIM1 resulted in a reduction of SOC associated Ca(2+ )influx in response to store depletion by cyclopiazonic acid (60%) or histamine but not bradykinin. siRNA to STIM2 had no effect on these responses. In addition STIM1 suppression resulted in a more or less complete abrogation of SOC associated inward currents assessed by whole cell patch clamp. CONCLUSION: Here we show that STIM1 acts as a key signal for SOC activation following intracellular Ca(2+ )store depletion or following agonist stimulation with histamine in human airway myocytes. These are the first data demonstrating a role for STIM1 in a physiologically relevant, non-transformed endogenous expression cell model

    Introducing a new breed of wine yeast: interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast and Saccharomyces mikatae

    Get PDF
    Interspecific hybrids are commonplace in agriculture and horticulture; bread wheat and grapefruit are but two examples. The benefits derived from interspecific hybridisation include the potential of generating advantageous transgressive phenotypes. This paper describes the generation of a new breed of wine yeast by interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast strain and Saccharomyces mikatae, a species hitherto not associated with industrial fermentation environs. While commercially available wine yeast strains provide consistent and reliable fermentations, wines produced using single inocula are thought to lack the sensory complexity and rounded palate structure obtained from spontaneous fermentations. In contrast, interspecific yeast hybrids have the potential to deliver increased complexity to wine sensory properties and alternative wine styles through the formation of novel, and wider ranging, yeast volatile fermentation metabolite profiles, whilst maintaining the robustness of the wine yeast parent. Screening of newly generated hybrids from a cross between a S. cerevisiae wine yeast and S. mikatae (closely-related but ecologically distant members of the Saccharomyces sensu stricto clade), has identified progeny with robust fermentation properties and winemaking potential. Chemical analysis showed that, relative to the S. cerevisiae wine yeast parent, hybrids produced wines with different concentrations of volatile metabolites that are known to contribute to wine flavour and aroma, including flavour compounds associated with non-Saccharomyces species. The new S. cerevisiae x S. mikatae hybrids have the potential to produce complex wines akin to products of spontaneous fermentation while giving winemakers the safeguard of an inoculated ferment.Jennifer R. Bellon, Frank Schmid, Dimitra L. Capone, Barbara L. Dunn, Paul J. Chamber

    DJ-1 protects against cell death following acute cardiac ischemia-reperfusion injury.

    Get PDF
    Novel therapeutic targets are required to protect the heart against cell death from acute ischemia-reperfusion injury (IRI). Mutations in the DJ-1 (PARK7) gene in dopaminergic neurons induce mitochondrial dysfunction and a genetic form of Parkinson's disease. Genetic ablation of DJ-1 renders the brain more susceptible to cell death following ischemia-reperfusion in a model of stroke. Although DJ-1 is present in the heart, its role there is currently unclear. We sought to investigate whether mitochondrial DJ-1 may protect the heart against cell death from acute IRI by preventing mitochondrial dysfunction. Overexpression of DJ-1 in HL-1 cardiac cells conferred the following beneficial effects: reduced cell death following simulated IRI (30.4±4.7% with DJ-1 versus 52.9±4.7% in control; n=5, P<0.05); delayed mitochondrial permeability transition pore (MPTP) opening (a critical mediator of cell death) (260±33 s with DJ-1 versus 121±12 s in control; n=6, P<0.05); and induction of mitochondrial elongation (81.3±2.5% with DJ-1 versus 62.0±2.8% in control; n=6 cells, P<0.05). These beneficial effects of DJ-1 were absent in cells expressing the non-functional DJ-1(L166P) and DJ-1(Cys106A) mutants. Adult mice devoid of DJ-1 (KO) were found to be more susceptible to cell death from in vivo IRI with larger myocardial infarct sizes (50.9±3.5% DJ-1 KO versus 41.1±2.5% in DJ-1 WT; n≥7, P<0.05) and resistant to cardioprotection by ischemic preconditioning. DJ-1 KO hearts showed increased mitochondrial fragmentation on electron microscopy, although there were no differences in calcium-induced MPTP opening, mitochondrial respiratory function or myocardial ATP levels. We demonstrate that loss of DJ-1 protects the heart from acute IRI cell death by preventing mitochondrial dysfunction. We propose that DJ-1 may represent a novel therapeutic target for cardioprotection

    Cell Origin of Human Mesenchymal Stem Cells Determines a Different Healing Performance in Cardiac Regeneration

    Get PDF
    The possible different therapeutic efficacy of human mesenchymal stem cells (hMSC) derived from umbilical cord blood (CB), adipose tissue (AT) or bone marrow (BM) for the treatment of myocardial infarction (MI) remains unexplored. This study was to assess the regenerative potential of hMSC from different origins and to evaluate the role of CD105 in cardiac regeneration. Male SCID mice underwent LAD-ligation and received the respective cell type (400.000/per animal) intramyocardially. Six weeks post infarction, cardiac catheterization showed significant preservation of left ventricular functions in BM and CD105+-CB treated groups compared to CB and nontreated MI group (MI-C). Cell survival analyzed by quantitative real time PCR for human GAPDH and capillary density measured by immunostaining showed consistent results. Furthermore, cardiac remodeling can be significantly attenuated by BM-hMSC compared to MI-C. Under hypoxic conditions in vitro, remarkably increased extracellular acidification and apoptosis has been detected from CB-hMSC compared to BM and CD105 purified CB-derived hMSC. Our findings suggests that hMSC originating from different sources showed a different healing performance in cardiac regeneration and CD105+ hMSC exhibited a favorable survival pattern in infarcted hearts, which translates into a more robust preservation of cardiac function

    The feasibility of using pattern recognition software to measure the influence of computer use on the consultation

    Get PDF
    BACKGROUND: A key feature of a good general practice consultation is that it is patient-centred. A number of verbal and non-verbal behaviours have been identified as important to establish a good relationship with the patient. However, the use of the computer detracts the doctor's attention away from the patient, compromising these essential elements of the consultation. Current methods to assess the consultation and the influence of the computer on them are time consuming and subjective. If it were possible to measure these quantitatively, it could provide the basis for the first truly objective way of studying the influence of the computer on the consultation. The aim was to assess whether pattern recognition software could be used to measure the influence and pattern of computer use in the consultation. If this proved possible it would provide, for the first time, an objective quantitative measure of computer use and a measure of the attention and responsiveness of the general practitioner towards the patient. METHODS: A feasibility study using pattern recognition software to analyse a consultation was conducted. A web camera, linked to a data-gathering node was used to film a simulated consultation in a standard office. Members of the research team enacted the role of the doctor and the patient, using pattern recognition software to try and capture patient-centred, non-verbal behaviour. As this was a feasibility study detailed results of the analysis are not presented. RESULTS: It was revealed that pattern recognition software could be used to analyse certain aspects of a simulated consultation. For example, trigger lines enabled the number of times the clinician's hand covered the keyboard to be counted and wrapping recorded the number of times the clinician nodded his head. It was also possible to measure time sequences and whether the movement was brief or lingering. CONCLUSION: Pattern recognition software enables movements associated with patient-centredness to be recorded. Pattern recognition software has the potential to provide an objective, quantitative measure of the influence of the computer on the consultation

    Factors determining the survival of nasopharyngeal carcinoma with lung metastasis alone: does combined modality treatment benefit?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nasopharyngeal carcinoma (NPC) with lung metastasis alone has been reported as a relatively favorable prognostic group, and combined modality treatment might be indicated for selected cases. However, the prognostic factors determining survival of this group and the indication of combined therapy have not been thoroughly studied.</p> <p>Methods</p> <p>We retrospectively reviewed 246 patients of NPC with lung metastasis(es) alone presented at diagnosis or as the first failure after primary treatment from 1993 to 2008 in an academic tertiary hospital. Univariate and multivariate survival analyses of post-metastasis survival (PMS) and overall survival (OS) were carried out to determine the prognostic factors.</p> <p>Results</p> <p>The 3-year, 5-year, and 10-year of PMS and OS for the whole cohort were 34.3%, 17.0%, 8.6% and 67.8%, 45.4%, 18.5%, respectively. The median PMS (45.6 months <it>vs</it>. 23.7 months) and OS (73.7 months <it>vs</it>. 46.2 months) of patients treated with combined therapy was significantly longer than that of those treated with chemotherapy alone (<it>P </it>< 0.001). Age, disease-free interval (DFI) and treatment modality were evaluated as independent prognostic factors of OS, while only age and treatment modality retain their independent significance in PMS analysis. In stratified survival analysis, compared to chemotherapy alone, combined therapy could benefit the patients with DFI > 1 year, but not those with DFI ≤ 1 year.</p> <p>Conclusions</p> <p>Age ≤ 45 years, DFI > 1 year, and the combined therapy were good prognostic factors for NPC patients with lung metastasis(es) alone. The combination of local therapy and the basic chemotherapy should be considered for these patients with DFI > 1 year.</p

    Bnip3 as a Dual Regulator of Mitochondrial Turnover and Cell Death in the Myocardium

    Get PDF
    The Bcl-2 adenovirus E1B 19 kDa-interacting protein 3 (Bnip3) is a pro-apoptotic BH3-only protein associated with the pathogenesis of many diseases, including cancer and cardiovascular disease. Studies over the past decade have provided insight into how Bnip3 induces mitochondrial dysfunction and subsequent cell death in cells. More recently, Bnip3 was identified as a potent inducer of autophagy in cells. However, the functional role of Bnip3-mediated autophagy has been difficult to define and remains controversial. New evidence has emerged suggesting that Bnip3 is an important regulator of mitochondrial turnover via autophagy in the myocardium. Also, studies suggest that the induction of Bnip3-dependent mitochondrial autophagy is a separately activated process independent of Bax/Bak and the mitochondrial permeability transition pore (mPTP). This review discusses the current understanding of the functional role that Bnip3 plays in the myocardium. Recent studies suggest that Bnip3 might have a dual function in the myocardium, where it regulates both mitochondrial turnover via autophagy and cell death and that these are two separate processes activated by Bnip3
    corecore