224 research outputs found

    VUV frequency combs from below-threshold harmonics

    Get PDF
    Recent demonstrations of high-harmonic generation (HHG) at very high repetition frequencies (~100 MHz) may allow for the revolutionary transfer of frequency combs to the vacuum ultraviolet (VUV). This advance necessitates unifying optical frequency comb technology with strong-field atomic physics. While strong-field studies of HHG have often focused on above-threshold harmonic generation (photon energy above the ionization potential), for VUV frequency combs an understanding of below-threshold harmonic orders and their generation process is crucial. Here we present a new and quantitative study of the harmonics 7-13 generated below and near the ionization threshold in xenon gas. We show multiple generation pathways for these harmonics that are manifested as on-axis interference in the harmonic yield. This discovery provides a new understanding of the strong-field, below-threshold dynamics under the influence of an atomic potential and allows us to quantitatively assess the achievable coherence of a VUV frequency comb generated through below threshold harmonics. We find that under reasonable experimental conditions temporal coherence is maintained. As evidence we present the first explicit VUV frequency comb structure beyond the 3rd harmonic.Comment: 16 pages, 4 figures, 1 tabl

    Protein interactions in Xenopus germ plasm RNP particles

    Get PDF
    Hermes is an RNA-binding protein that we have previously reported to be found in the ribonucleoprotein (RNP) particles of Xenopus germ plasm, where it is associated with various RNAs, including that encoding the germ line determinant Nanos1. To further define the composition of these RNPs, we performed a screen for Hermes-binding partners using the yeast two-hybrid system. We have identified and validated four proteins that interact with Hermes in germ plasm: two isoforms of Xvelo1 (a homologue of zebrafish Bucky ball) and Rbm24b and Rbm42b, both RNA-binding proteins containing the RRM motif. GFP-Xvelo fusion proteins and their endogenous counterparts, identified with antisera, were found to localize with Hermes in the germ plasm particles of large oocytes and eggs. Only the larger Xvelo isoform was naturally found in the Balbiani body of previtellogenic oocytes. Bimolecular fluorescence complementation (BiFC) experiments confirmed that Hermes and the Xvelo variants interact in germ plasm, as do Rbm24b and 42b. Depletion of the shorter Xvelo variant with antisense oligonucleotides caused a decrease in the size of germ plasm aggregates and loosening of associated mitochondria from these structures. This suggests that the short Xvelo variant, or less likely its RNA, has a role in organizing and maintaining the integrity of germ plasm in Xenopus oocytes. While GFP fusion proteins for Rbm24b and 42b did not localize into germ plasm as specifically as Hermes or Xvelo, BiFC analysis indicated that both interact with Hermes in germ plasm RNPs. They are very stable in the face of RNA depletion, but additive effects of combinations of antisense oligos suggest they may have a role in germ plasm structure and may influence the ability of Hermes protein to effectively enter RNP particles

    The ethics of digital well-being: a multidisciplinary perspective

    Get PDF
    This chapter serves as an introduction to the edited collection of the same name, which includes chapters that explore digital well-being from a range of disciplinary perspectives, including philosophy, psychology, economics, health care, and education. The purpose of this introductory chapter is to provide a short primer on the different disciplinary approaches to the study of well-being. To supplement this primer, we also invited key experts from several disciplines—philosophy, psychology, public policy, and health care—to share their thoughts on what they believe are the most important open questions and ethical issues for the multi-disciplinary study of digital well-being. We also introduce and discuss several themes that we believe will be fundamental to the ongoing study of digital well-being: digital gratitude, automated interventions, and sustainable co-well-being

    Bacteriophage biodistribution and infectivity from honeybee to bee larvae using a T7 phage model

    Get PDF
    Bacteriophages (phages) or viruses that specifically infect bacteria have widely been studied as biocontrol agents against animal and plant bacterial diseases. They offer many advantages compared to antibiotics. The American Foulbrood (AFB) is a bacterial disease affecting honeybee larvae caused by Paenibacillus larvae. Phages can be very significant in fighting it mostly due to European restrictions to the use of antibiotics in beekeeping. New phages able to control P. larvae in hives have already been reported with satisfactory results. However, the efficacy and feasibility of administering phages indirectly to larvae through their adult workers only by providing phages in bees feeders has never been evaluated. This strategy is considered herein the most feasible as far as hive management is concerned. This in vivo study investigated the ability of a phage to reach larvae in an infective state after oral administration to honeybees. The screening (by direct PFU count) and quantification (by quantitative PCR) of the phage in bee organs and in larvae after ingestion allowed us to conclude that despite 104 phages reaching larvae only an average of 32 were available to control the spread of the disease. The fast inactivation of many phages in royal jelly could compromise this therapeutic approach. The protection of phages from hive-derived conditions should be thus considered in further developments for AFB treatment.This study was supported by the project APILYSE, PTDC/CVT-EPI/4008/2014 - POCI-01-0145-FEDER-016598, - funded by FEDER through COMPETE 2020 - Programa Operacional Competitividade e Internacionalização (POCI) and by national funds trough FCT - Fundação para a Ciência e a Tecnologia, I.P. The work was also supported by the strategic funding of UID/BIO/04469/2013 unit, COMPETE 2020 (POCI-01-0145FEDER-006684) and BioTecNorte operation (NORTE-01-0145-FEDER-000004), funded by the European Regional Development Fund under the scope of Norte2020 - Programa Operacional Regional do Norte. HR was supported by FCT through the grant SFRH/BD/128859/2017. RC was founded by FCT and FEDER (POCI-010145-FEDER-007274).info:eu-repo/semantics/publishedVersio

    Auditory temporal resolution of a wild white-beaked dolphin (Lagenorhynchus albirostris)

    Get PDF
    Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology 195 (2009): 375-384, doi:10.1007/s00359-009-0415-x.Adequate temporal resolution is required across taxa to properly utilize amplitude modulated acoustic signals. Among mammals, odontocete marine mammals are considered to have relatively high temporal resolution, which is a selective advantage when processing fast traveling underwater sound. However, multiple methods used to estimate auditory temporal resolution have left comparisons among odontocetes and other mammals somewhat vague. Here we present the estimated auditory temporal resolution of an adult male white-beaked dolphin, (Lagenorhynchus albirostris), using auditory evoked potentials and click stimuli. Ours is the first of such studies performed on a wild dolphin in a capture-and-release scenario. The white-beaked dolphin followed rhythmic clicks up to a rate of approximately 1125-1250 Hz, after which the modulation rate transfer function (MRTF) cut-off steeply. However, 10% of the maximum response was still found at 1450 Hz indicating high temporal resolution. The MRTF was similar in shape and bandwidth to that of other odontocetes. The estimated maximal temporal resolution of white-beaked dolphins and other odontocetes was approximately twice that of pinnipeds and manatees, and more than ten-times faster than humans and gerbils. The exceptionally high temporal resolution abilities of odontocetes are likely due primarily to echolocation capabilities that require rapid processing of acoustic cues.We wish to thank the Danish Natural Science Research Council for major financial support (grant no. 272-05-0395)

    Assessing weight perception accuracy to promote weight loss among U.S. female adolescents: A secondary analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Overweight and obesity have become a global epidemic. The prevalence of overweight and obesity among U.S. adolescents has almost tripled in the last 30 years. Results from recent systematic reviews demonstrate that no single, particular intervention or strategy successfully assists overweight or obese adolescents in losing weight. An understanding of factors that influence healthy weight-loss behaviors among overweight and obese female adolescents promotes effective, multi-component weight-loss interventions. There is limited evidence demonstrating associations between demographic variables, body-mass index, and weight perception among female adolescents trying to lose weight. There is also a lack of previous studies examining the association of the accuracy of female adolescents' weight perception with their efforts to lose weight. This study, therefore, examined the associations of body-mass index, weight perception, and weight-perception accuracy with trying to lose weight and engaging in exercise as a weight-loss method among a representative sample of U.S. female adolescents.</p> <p>Methods</p> <p>A nonexperimental, descriptive, comparative secondary analysis design was conducted using data from Wave II (1996) of the National Longitudinal Study of Adolescent Health (Add Health). Data representative of U.S. female adolescents (N = 2216) were analyzed using STATA statistical software. Descriptive statistics and survey weight logistic regression were performed to determine if demographic and independent (body-mass index, weight perception, and weight perception accuracy) variables were associated with trying to lose weight and engaging in exercise as a weight-loss method.</p> <p>Results</p> <p>Age, Black or African American race, body-mass index, weight perception, and weight perceptions accuracy were consistently associated with the likeliness of trying to lose weight among U.S. female adolescents. Age, body-mass index, weight perception, and weight-perception accuracy were positively associated (<it>p </it>< 0.05) with trying to lose weight. Black/African American subjects were significantly less likely than their White counterparts to be trying to lose weight. There was no association between demographic or independent variables and engaging in exercise as a weight-loss method.</p> <p>Conclusions</p> <p>Findings suggest that factors influencing weight-loss efforts, including age, race, body-mass index, weight perception, and weight-perception accuracy, should be incorporated into existing or new multi-component weight-loss interventions for U.S. adolescent females in order to help reduce the national epidemic of overweight and obesity among U.S. female adolescents.</p

    Sensing and adhesion are adaptive functions in the plant pathogenic xanthomonads

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bacterial plant pathogens belonging to the <it>Xanthomonas </it>genus are tightly adapted to their host plants and are not known to colonise other environments. The host range of each strain is usually restricted to a few host plant species. Bacterial strains responsible for the same type of symptoms on the same host range cluster in a pathovar. The phyllosphere is a highly stressful environment, but it provides a selective habitat and a source of substrates for these bacteria. Xanthomonads colonise host phylloplane before entering leaf tissues and engaging in an invasive pathogenic phase. Hence, these bacteria are likely to have evolved strategies to adapt to life in this environment. We hypothesised that determinants responsible for bacterial host adaptation are expressed starting from the establishment of chemotactic attraction and adhesion on host tissue.</p> <p>Results</p> <p>We established the distribution of 70 genes coding sensors and adhesins in a large collection of xanthomonad strains. These 173 strains belong to different pathovars of <it>Xanthomonas </it>spp and display different host ranges. Candidate genes are involved in chemotactic attraction (25 genes), chemical environment sensing (35 genes), and adhesion (10 genes). Our study revealed that candidate gene repertoires comprised core and variable gene suites that likely have distinct roles in host adaptation. Most pathovars were characterized by unique repertoires of candidate genes, highlighting a correspondence between pathovar clustering and repertoires of sensors and adhesins. To further challenge our hypothesis, we tested for molecular signatures of selection on candidate genes extracted from sequenced genomes of strains belonging to different pathovars. We found strong evidence of adaptive divergence acting on most candidate genes.</p> <p>Conclusions</p> <p>These data provide insight into the potential role played by sensors and adhesins in the adaptation of xanthomonads to their host plants. The correspondence between repertoires of sensor and adhesin genes and pathovars and the rapid evolution of sensors and adhesins shows that, for plant pathogenic xanthomonads, events leading to host specificity may occur as early as chemotactic attraction by host and adhesion to tissues.</p

    Some recommendations for developing multidimensional computerized adaptive tests for patient-reported outcomes

    Get PDF
    PURPOSE: Multidimensional item response theory and computerized adaptive testing (CAT) are increasingly used in mental health, quality of life (QoL), and patient-reported outcome measurement. Although multidimensional assessment techniques hold promises, they are more challenging in their application than unidimensional ones. The authors comment on minimal standards when developing multidimensional CATs. METHODS: Prompted by pioneering papers published in QLR, the authors reflect on existing guidance and discussions from different psychometric communities, including guidelines developed for unidimensional CATs in the PROMIS project. RESULTS: The commentary focuses on two key topics: (1) the design, evaluation, and calibration of multidimensional item banks and (2) how to study the efficiency and precision of a multidimensional item bank. The authors suggest that the development of a carefully designed and calibrated item bank encompasses a construction phase and a psychometric phase. With respect to efficiency and precision, item banks should be large enough to provide adequate precision over the full range of the latent constructs. Therefore CAT performance should be studied as a function of the latent constructs and with reference to relevant benchmarks. Solutions are also suggested for simulation studies using real data, which often result in too optimistic evaluations of an item bank's efficiency and precision. DISCUSSION: Multidimensional CAT applications are promising but complex statistical assessment tools which necessitate detailed theoretical frameworks and methodological scrutiny when testing their appropriateness for practical applications. The authors advise researchers to evaluate item banks with a broad set of methods, describe their choices in detail, and substantiate their approach for validation

    A physical activity intervention to improve the quality of life of patients with a stoma: a feasibility study

    Get PDF
    Background We hypothesise that a physical activity (PA) intervention will improve the quality of life (QoL) of people with a stoma. A feasibility study of the intervention and trial parameters is necessary to inform a future main trial. Methods Participants received a weekly PA consultation by telephone, video conferencing, or face-to-face for 12 weeks with a PA instructor who prescribed physical activities and supported participants by addressing stoma-related concerns and using behaviour change techniques. A feasibility study of the intervention and trial parameters was conducted in three UK sites using mixed methods. Results The number of eligible patients consenting to the study was 30 out of 174 (17%). Most participants were female (73%); 73% had an ileostomy and 27% a colostomy; mean time since diagnosis was 6 months. A total of 18 (64%) participants completed pre- (baseline) and post-intervention (follow-up) measures. Results show an improvement on all scales measuring QoL and disease-specific fatigue. The median PA consultation rate per participant was eight sessions. Participants reported completing 75% or more of the prescribed PA each week. Eight stoma-related themes were identified from qualitative interviews: fear of hernia, bending down, fatigue, pain, prolapse, surgical wounds, stoma appliance, and stigma. The intervention appeared to address these issues. Conclusion This feasibility study demonstrated that a novel manualised PA intervention for people with a stoma is safe, feasible, and acceptable, and shows promise for improving outcomes. However, difficulties with recruitment will need to be carefully considered to ensure the success of future studies in this area

    Real-time observation of multiexcitonic states in ultrafast singlet fission using coherent 2D electronic spectroscopy.

    Get PDF
    Singlet fission is the spin-allowed conversion of a spin-singlet exciton into a pair of spin-triplet excitons residing on neighbouring molecules. To rationalize this phenomenon, a multiexcitonic spin-zero triplet-pair state has been hypothesized as an intermediate in singlet fission. However, the nature of the intermediate states and the underlying mechanism of ultrafast fission have not been elucidated experimentally. Here, we study a series of pentacene derivatives using ultrafast two-dimensional electronic spectroscopy and unravel the origin of the states involved in fission. Our data reveal the crucial role of vibrational degrees of freedom coupled to electronic excitations that facilitate the mixing of multiexcitonic states with singlet excitons. The resulting manifold of vibronic states drives sub-100 fs fission with unity efficiency. Our results provide a framework for understanding singlet fission and show how the formation of vibronic manifolds with a high density of states facilitates fast and efficient electronic processes in molecular systems.This is the author accepted manuscript. The final version is available from NPG via http://dx.doi.org/10.1038/nchem.237
    corecore