801 research outputs found

    A software and hardware evaluation of revolutionary turbo MIMO OFDM schemes for 5 GHz WLANs

    Get PDF

    Seasonal variation in daily patterns of social contacts in the European badger Meles meles

    Get PDF
    This is the author accepted manuscript. The final version is available from Wiley via the DOI in this record.Social interactions among hosts influence the persistence and spread of infectious pathogens. Daily 20 and seasonal variation in the frequency and type of social interactions will play an important role in 21 disease epidemiology, and alongside other factors may have an influence on wider disease dynamics 22 by causing seasonal forcing of infection, especially if the seasonal variation experienced by a 23 population is considerable. We explored temporal variation in within-group contacts in a high-24 density population of European badgers Meles meles naturally-infected with bovine tuberculosis. 25 Summer contacts were more likely and of longer duration during the daytime, while the frequency 26 and duration of winter contacts did not differ between day and night. In spring and autumn within-27 group contacts peaked at dawn and dusk, corresponding with when they were of shortest duration 28 with reduced potential for aerosol transmission of pathogens. Summer and winter could be critical 29 for bovine tuberculosis transmission in badgers, due to the high frequency and duration of contacts 30 during resting periods, and we discuss the links between this result and empirical data. This study 31 reveals clear seasonality in daily patterns of contact frequency and duration in species living in stable 32 social groups, suggesting that changes in social contacts could drive seasonal forcing of infection in 33 wildlife populations even when the number of individuals interacting remains similar.MJS is funded by NERC grant NE/M004546/1 awarded to RAM, DPC, DJH and MB, with RJD and the 386 APHA team at Woodchester Park, UK as project partners. Data were collected for NW’s PhD, funded 387 by Defra. We thank Jared Wilson-Aggarwal and two anonymous reviewers for useful comments and 388 Keith Silk for providing the photograph for Figure 1

    Towards a “Rescue Ready” Mindset: Can Lifeguard Teams Learn Lessons from the Attributes of Chronic Unease?

    Get PDF
    Highly Reliable Organisations (HROs) are safety-centric organisations that operate in complex environments alongside risky technologies and processes. There is a high risk of catastrophe and error in these settings, the consequences of which may result in loss of life, financial cost, and damage to the environment. “Chronic unease” is a concept originally adopted by Royal Dutch Shell describing a mindset that has five predictable attributes that contribute to an individual’s and organisational safety culture. The authors of this paper describe the attributes of chronic unease in the context of lifeguard operations. A case study of a dangerous and dynamic rescue situation from a popular New Zealand beach is presented and analysed wearing a ‘cloak of chronic unease’ to draw upon the attributes of this concept and to present a discussion about how lifeguards, their managers, and leaders may learn valuable lessons from HROs to develop safer operations by fostering a similar mindset we have dubbed: “The Rescue-Ready” mindset

    Nonthermal Emission from Star-Forming Galaxies

    Full text link
    The detections of high-energy gamma-ray emission from the nearby starburst galaxies M82 & NGC253, and other local group galaxies, broaden our knowledge of star-driven nonthermal processes and phenomena in non-AGN star-forming galaxies. We review basic aspects of the related processes and their modeling in starburst galaxies. Since these processes involve both energetic electrons and protons accelerated by SN shocks, their respective radiative yields can be used to explore the SN-particle-radiation connection. Specifically, the relation between SN activity, energetic particles, and their radiative yields, is assessed through respective measures of the particle energy density in several star-forming galaxies. The deduced energy densities range from O(0.1) eV/cm^3 in very quiet environments to O(100) eV/cm^3 in regions with very high star-formation rates.Comment: 17 pages, 5 figures, to be published in Astrophysics and Space Science Proceeding

    Hawking emission from quantum gravity black holes

    Get PDF
    We address the issue of modelling quantum gravity effects in the evaporation of higher dimensional black holes in order to go beyond the usual semi-classical approximation. After reviewing the existing six families of quantum gravity corrected black hole geometries, we focus our work on non-commutative geometry inspired black holes, which encode model independent characteristics, are unaffected by the quantum back reaction and have an analytical form compact enough for numerical simulations. We consider the higher dimensional, spherically symmetric case and we proceed with a complete analysis of the brane/bulk emission for scalar fields. The key feature which makes the evaporation of non-commutative black holes so peculiar is the possibility of having a maximum temperature. Contrary to what happens with classical Schwarzschild black holes, the emission is dominated by low frequency field modes on the brane. This is a distinctive and potentially testable signature which might disclose further features about the nature of quantum gravity.Comment: 36 pages, 18 figures, v2: updated reference list, minor corrections, version matching that published on JHE

    <i>Trypanosoma brucei</i> DHRF-TS revisited:characterisation of a bifunctional and highly unstable recombinant dihydrofolate reductase-thymidylate synthase

    Get PDF
    <div><p>Bifunctional dihydrofolate reductase–thymidylate synthase (DHFR-TS) is a chemically and genetically validated target in African trypanosomes, causative agents of sleeping sickness in humans and nagana in cattle. Here we report the kinetic properties and sensitivity of recombinant enzyme to a range of lipophilic and classical antifolate drugs. The purified recombinant enzyme, expressed as a fusion protein with elongation factor Ts (Tsf) in ThyA<sup>-</sup> <i>Escherichia coli</i>, retains DHFR activity, but lacks any TS activity. TS activity was found to be extremely unstable (half-life of 28 s) following desalting of clarified bacterial lysates to remove small molecules. Stability could be improved 700-fold by inclusion of dUMP, but not by other pyrimidine or purine (deoxy)-nucleosides or nucleotides. Inclusion of dUMP during purification proved insufficient to prevent inactivation during the purification procedure. Methotrexate and trimetrexate were the most potent inhibitors of DHFR (<i>K</i><sub>i</sub> 0.1 and 0.6 nM, respectively) and FdUMP and nolatrexed of TS (<i>K</i><sub>i</sub> 14 and 39 nM, respectively). All inhibitors showed a marked drop-off in potency of 100- to 1,000-fold against trypanosomes grown in low folate medium lacking thymidine. The most potent inhibitors possessed a terminal glutamate moiety suggesting that transport or subsequent retention by polyglutamylation was important for biological activity. Supplementation of culture medium with folate markedly antagonised the potency of these folate-like inhibitors, as did thymidine in the case of the TS inhibitors raltitrexed and pemetrexed.</p></div

    T2 Values of Posterior Horns of Knee Menisci in Asymptomatic Subjects

    Get PDF
    [[abstract]]Purpose: The magnetic resonance (MR) T2 value of cartilage is a reliable indicator of tissue properties and therefore may be used as an objective diagnostic tool in early meniscal degeneration. The purpose of this study was to investigate age, gender, location, and zonal differences in MR T2 value of the posterior horns of knee menisci in asymptomatic subjects. Methods: Sixty asymptomatic volunteers (30 men and 30 women) were enrolled and divided into three different age groups: 20–34, 35–49 and 50–70 years. The inclusion criteria were BMI<30 kg/cm2, normalized Western Ontario and McMaster Universities (WOMAC) pain score of zero, and no evidence of meniscal and ligamentous abnormalities on routine knee MR imaging. The T2 values were measured on images acquired with a T2-weighted fat-suppressed turbo spin-echo sequence at 3T. Results: The mean T2 values in both medial and lateral menisci for the 20–34, 35–49, and 50–70 age groups were 9.94 msec±0.94, 10.73 msec±1.55, and 12.36 msec±2.27, respectively, for women and 9.17 msec±0.74, 9.64 msec±0.67, and 10.95 msec±1.33, respectively, for men. The T2 values were significantly higher in the 50–70 age group than the 20–34 age group (P<0.001) and in women than in men (P = 0.001, 0.004, and 0.049 for each respective age group). T2 values were significantly higher in medial menisci than in lateral menisci only in women age 50–70 (3.33 msec, P = 0.006) and in the white zone and red/white zone of the 50–70 and 35–49 age groups than that of the 20–34 age group (2.47, 1.02; 2.77, 1.16 msec, respectively, all P<0.01). Conclusion: The MR T2 values of the posterior meniscal horns increase with increasing age in women and are higher in women than in men. The age-related rise of T2 values appears to be more severe in medial menisci than in lateral menisci. Differences exist in the white zone and red/white zone.[[incitationindex]]SCI[[booktype]]電子

    Impacts of climate change on plant diseases – opinions and trends

    Get PDF
    There has been a remarkable scientific output on the topic of how climate change is likely to affect plant diseases in the coming decades. This review addresses the need for review of this burgeoning literature by summarizing opinions of previous reviews and trends in recent studies on the impacts of climate change on plant health. Sudden Oak Death is used as an introductory case study: Californian forests could become even more susceptible to this emerging plant disease, if spring precipitations will be accompanied by warmer temperatures, although climate shifts may also affect the current synchronicity between host cambium activity and pathogen colonization rate. A summary of observed and predicted climate changes, as well as of direct effects of climate change on pathosystems, is provided. Prediction and management of climate change effects on plant health are complicated by indirect effects and the interactions with global change drivers. Uncertainty in models of plant disease development under climate change calls for a diversity of management strategies, from more participatory approaches to interdisciplinary science. Involvement of stakeholders and scientists from outside plant pathology shows the importance of trade-offs, for example in the land-sharing vs. sparing debate. Further research is needed on climate change and plant health in mountain, boreal, Mediterranean and tropical regions, with multiple climate change factors and scenarios (including our responses to it, e.g. the assisted migration of plants), in relation to endophytes, viruses and mycorrhiza, using long-term and large-scale datasets and considering various plant disease control methods

    Vegetation Type Dominates the Spatial Variability in CH<inf>4</inf> Emissions Across Multiple Arctic Tundra Landscapes

    Get PDF
    Methane (CH4) emissions from Arctic tundra are an important feedback to global climate. Currently, modelling and predicting CH4 fluxes at broader scales are limited by the challenge of upscaling plot-scale measurements in spatially heterogeneous landscapes, and by uncertainties regarding key controls of CH4 emissions. In this study, CH4 and CO2 fluxes were measured together with a range of environmental variables and detailed vegetation analysis at four sites spanning 300 km latitude from Barrow to Ivotuk (Alaska). We used multiple regression modelling to identify drivers of CH4 flux, and to examine relationships between gross primary productivity (GPP), dissolved organic carbon (DOC) and CH4 fluxes. We found that a highly simplified vegetation classification consisting of just three vegetation types (wet sedge, tussock sedge and other) explained 54% of the variation in CH4 fluxes across the entire transect, performing almost as well as a more complex model including water table, sedge height and soil moisture (explaining 58% of the variation in CH4 fluxes). Substantial CH4 emissions were recorded from tussock sedges in locations even when the water table was lower than 40 cm below the surface, demonstrating the importance of plant-mediated transport. We also found no relationship between instantaneous GPP and CH4 fluxes, suggesting that models should be cautious in assuming a direct relationship between primary production and CH4 emissions. Our findings demonstrate the importance of vegetation as an integrator of processes controlling CH4 emissions in Arctic ecosystems, and provide a simplified framework for upscaling plot scale CH4 flux measurements from Arctic ecosystems
    corecore