197 research outputs found

    Matching structure and bargaining outcomes in buyer–seller networks

    Get PDF
    We examine the relationship between the matching structure of a bipartite (buyer-seller) network and the (expected) shares of the unit surplus that each connected pair in this network can create. We show that in different bargaining environments, these shares are closely related to the Gallai-Edmonds Structure Theorem. This theorem characterizes the structure of maximum matchings in an undirected graph. We show that the relationship between the (expected) shares and the tructure Theorem is not an artefact of a particular bargaining mechanism or trade centralization. However, this relationship does not necessarily generalize to non-bipartite networks or to networks with heterogeneous link values

    Visualizing the Feature Importance for Black Box Models

    Full text link
    In recent years, a large amount of model-agnostic methods to improve the transparency, trustability and interpretability of machine learning models have been developed. We introduce local feature importance as a local version of a recent model-agnostic global feature importance method. Based on local feature importance, we propose two visual tools: partial importance (PI) and individual conditional importance (ICI) plots which visualize how changes in a feature affect the model performance on average, as well as for individual observations. Our proposed methods are related to partial dependence (PD) and individual conditional expectation (ICE) plots, but visualize the expected (conditional) feature importance instead of the expected (conditional) prediction. Furthermore, we show that averaging ICI curves across observations yields a PI curve, and integrating the PI curve with respect to the distribution of the considered feature results in the global feature importance. Another contribution of our paper is the Shapley feature importance, which fairly distributes the overall performance of a model among the features according to the marginal contributions and which can be used to compare the feature importance across different models.Comment: To Appear in Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2018, Dublin, Ireland, September 10 to 14, 2018, Proceedings, Part

    A probabilistic unified approach for power indices in simple games

    Get PDF
    The final publication is available at Springer via https://doi.org/10.1007/978-3-662-60555-4_11Many power indices on simple games have been defined trying to measure, under different points of view, the “a priori” importance of a voter in a collective binary voting scenario. A unified probabilistic way to define some of these power indices is considered in this paper. We show that six well-known power indices are obtained under such a probabilistic approach. Moreover, some new power indices can naturally be obtained in this way.Peer ReviewedPostprint (author's final draft

    Early star-forming galaxies and the reionization of the Universe

    Full text link
    Star forming galaxies represent a valuable tracer of cosmic history. Recent observational progress with Hubble Space Telescope has led to the discovery and study of the earliest-known galaxies corresponding to a period when the Universe was only ~800 million years old. Intense ultraviolet radiation from these early galaxies probably induced a major event in cosmic history: the reionization of intergalactic hydrogen. New techniques are being developed to understand the properties of these most distant galaxies and determine their influence on the evolution of the universe.Comment: Review article appearing in Nature. This posting reflects a submitted version of the review formatted by the authors, in accordance with Nature publication policies. For the official, published version of the review, please see http://www.nature.com/nature/archive/index.htm

    The Interstellar Medium In Galaxies Seen A Billion Years After The Big Bang

    Get PDF
    Evolution in the measured rest frame ultraviolet spectral slope and ultraviolet to optical flux ratios indicate a rapid evolution in the dust obscuration of galaxies during the first 3 billion years of cosmic time (z>4). This evolution implies a change in the average interstellar medium properties, but the measurements are systematically uncertain due to untested assumptions, and the inability to measure heavily obscured regions of the galaxies. Previous attempts to directly measure the interstellar medium in normal galaxies at these redshifts have failed for a number of reasons with one notable exception. Here we report measurements of the [CII] gas and dust emission in 9 typical (~1-4L*) star-forming galaxies ~1 billon years after the big bang (z~5-6). We find these galaxies have >12x less thermal emission compared with similar systems ~2 billion years later, and enhanced [CII] emission relative to the far-infrared continuum, confirming a strong evolution in the interstellar medium properties in the early universe. The gas is distributed over scales of 1-8 kpc, and shows diverse dynamics within the sample. These results are consistent with early galaxies having significantly less dust than typical galaxies seen at z<3 and being comparable to local low-metallicity systems.Comment: Submitted to Nature, under review after referee report. 22 pages, 4 figures, 4 Extended Data Figures, 5 Extended Data table

    Voting power measurement: a story of misreinvention

    Get PDF
    In this account of the history of voting-power measurement, we confine ourselves to the concept of a priori voting power. We show how the concept was re-invented several times and how the circumstances in which it was reinvented led to conceptual confusion as to the true meaning of what is being measured. In particular, power-as-influence was conflated with value in the sense of transferable utility cooperative game theory (power as share in constant total payoff). Influence was treated, improperly, as though it were transferable utility, and hence an additive and distributive quantity. We provide examples of the resulting misunderstanding and mis-directed criticism

    Robustness of Learning That Is Based on Covariance-Driven Synaptic Plasticity

    Get PDF
    It is widely believed that learning is due, at least in part, to long-lasting modifications of the strengths of synapses in the brain. Theoretical studies have shown that a family of synaptic plasticity rules, in which synaptic changes are driven by covariance, is particularly useful for many forms of learning, including associative memory, gradient estimation, and operant conditioning. Covariance-based plasticity is inherently sensitive. Even a slight mistuning of the parameters of a covariance-based plasticity rule is likely to result in substantial changes in synaptic efficacies. Therefore, the biological relevance of covariance-based plasticity models is questionable. Here, we study the effects of mistuning parameters of the plasticity rule in a decision making model in which synaptic plasticity is driven by the covariance of reward and neural activity. An exact covariance plasticity rule yields Herrnstein's matching law. We show that although the effect of slight mistuning of the plasticity rule on the synaptic efficacies is large, the behavioral effect is small. Thus, matching behavior is robust to mistuning of the parameters of the covariance-based plasticity rule. Furthermore, the mistuned covariance rule results in undermatching, which is consistent with experimentally observed behavior. These results substantiate the hypothesis that approximate covariance-based synaptic plasticity underlies operant conditioning. However, we show that the mistuning of the mean subtraction makes behavior sensitive to the mistuning of the properties of the decision making network. Thus, there is a tradeoff between the robustness of matching behavior to changes in the plasticity rule and its robustness to changes in the properties of the decision making network

    The NIRVANDELS Survey: A robust detection of α-enhancement in star-forming galaxies at z ≃3.4

    Get PDF
    We present results from the NIRVANDELS survey on the gas-phase metallicity (Zg, tracing O/H) and stellar metallicity (Z∗, tracing Fe/H) of 33 star-forming galaxies at redshifts 2.95 3, finding (O/Fe) = 2.54 ± 0.38 × (O/Fe)⊙, with no clear dependence on M∗
    corecore