2,261 research outputs found

    Optogenetic elevation of endogenous glucocorticoid level in larval zebrafish

    Get PDF
    The stress response is a suite of physiological and behavioral processes that help to maintain or reestablish homeostasis. Central to the stress response is the hypothalamic-pituitary-adrenal (HPA) axis, as it releases crucial hormones in response to stress. Glucocorticoids (GCs) are the final effector hormones of the HPA axis, and exert a variety of actions under both basal and stress conditions. Despite their far-reaching importance for health, specific GC effects have been difficult to pin-down due to a lack of methods for selectively manipulating endogenous GC levels. Hence, in order to study stress-induced GC effects, we developed a novel optogenetic approach to selectively manipulate the rise of GCs triggered by stress. Using this approach, we could induce both transient hypercortisolic states and persistent forms of hypercortisolaemia in freely behaving larval zebrafish. Our results also established that transient hypercortisolism leads to enhanced locomotion shortly after stressor exposure. Altogether, we present a highly specific method for manipulating the gain of the stress axis with high temporal accuracy, altering endocrine and behavioral responses to stress as well as basal GC levels. Our study offers a powerful tool for the analysis of rapid (non-genomic) and delayed (genomic) GC effects on brain function and behavior, feedbacks within the stress axis and developmental programming by GCs

    Gamma-Ray Bursts in the Swift Era

    Full text link
    With its rapid-response capability and multiwavelength complement of instruments, the Swift satellite has transformed our physical understanding of gamma-ray bursts (GRBs). Providing high-quality observations of hundreds of bursts, and facilitating a wide range of follow-up observations within seconds of each event, Swift has revealed an unforeseen richness in observed burst properties, shed light on the nature of short-duration bursts, and helped realize the promise of GRBs as probes of the processes and environments of star formation out to the earliest cosmic epochs. These advances have opened new perspectives on the nature and properties of burst central engines, interactions with the burst environment from microparsec to gigaparsec scales, and the possibilities for non-photonic signatures. Our understanding of these extreme cosmic sources has thus advanced substantially; yet more than 40 years after their discovery, GRBs continue to present major challenges on both observational and theoretical fronts.Comment: 67 pages, 16 figures; ARAA, 2009; http://arjournals.annualreviews.org/toc/astro/47/

    Emergent excitations in a geometrically frustrated magnet

    Full text link
    Frustrated systems are ubiquitous and interesting because their behavior is difficult to predict. Magnetism offers extreme examples in the form of spin lattices where all interactions between spins cannot be simultaneously satisfied. Such geometrical frustration leads to macroscopic degeneracies, and offers the possibility of qualitatively new states of matter whose nature has yet to be fully understood. Here we have discovered how novel composite spin degrees of freedom can emerge from frustrated interactions in the cubic spinel ZnCr2O4. Upon cooling, groups of six spins self-organize into weakly interacting antiferromagnetic loops whose directors, defined as the unique direction along which the spins are aligned parallel or antiparallel, govern all low temperature dynamics. The experimental evidence comes from a measurement of the magnetic form factor by inelastic neutron scattering. While the data bears no resemblance to the atomic form factor for chromium, they are perfectly consistent with the form factor for hexagonal spin loop directors. The hexagon directors are to a first approximation decoupled from each other and hence their reorientations embody the long-sought local zero energy modes for the pyrochlore lattice.Comment: 10 pages, 4 figures upon reques

    The Effect of Transposable Element Insertions on Gene Expression Evolution in Rodents

    Get PDF
    Background:Many genomes contain a substantial number of transposable elements (TEs), a few of which are known to be involved in regulating gene expression. However, recent observations suggest that TEs may have played a very important role in the evolution of gene expression because many conserved non-genic sequences, some of which are know to be involved in gene regulation, resemble TEs. Results:Here we investigate whether new TE insertions affect gene expression profiles by testing whether gene expression divergence between mouse and rat is correlated to the numbers of new transposable elements inserted near genes. We show that expression divergence is significantly correlated to the number of new LTR and SINE elements, but not to the numbers of LINEs. We also show that expression divergence is not significantly correlated to the numbers of ancestral TEs in most cases, which suggests that the correlations between expression divergence and the numbers of new TEs are causal in nature. We quantify the effect and estimate that TE insertion has accounted for ~20% (95% confidence interval: 12% to 26%) of all expression profile divergence in rodents. Conclusions:We conclude that TE insertions may have had a major impact on the evolution of gene expression levels in rodents

    Intraneural pseudocyst (so-called ganglion) in an unusual retroperitoneal periadnexal location?

    Get PDF
    A case of an unusual unilocular cystic lesion of diameter 7 cm located retroperitoneally in the pelvis in close connection to the right adnexa of a 61 year-old woman is presented. Macroscopically, the lesion had a smooth outer and inner surface and was filled with translucent fluid. Histological examination revealed a fibrous and hyalinized wall which lacked a specific lining. Numerous nerve bundles in the cyst wall constituted the most conspicuous element of its histology possibly with some contribution of perineurial and/or mesothelial components. The morphology and immunohistochemistry speak for an intraneural pseudocyst sometimes called intraneural ganglion cyst which is rare in this location

    HIV-DNA Given with or without Intradermal Electroporation Is Safe and Highly Immunogenic in Healthy Swedish HIV-1 DNA/MVA Vaccinees: A Phase I Randomized Trial

    No full text
    We compared safety and immunogenicity of intradermal (ID) vaccination with and without electroporation (EP) in a phase I randomized placebo-controlled trial of an HIV-DNA prime HIV-MVA boost vaccine in healthy Swedish volunteers.HIV-DNA plasmids encoding HIV-1 genes gp160 subtypes A, B and C; Rev B; Gag A and B and RTmut B were given ID at weeks 0, 6 and 12 in a dose of 0.6 mg. Twenty-five volunteers received vaccine using a needle-free device (ZetaJet) with (n=16) or without (n=9) ID EP (Dermavax). Five volunteers were placebo recipients. Boosting with recombinant MVA-CMDR expressing HIV-1 Env, Gag, Pol of CRF01_AE (HIV-MVA) or placebo was performed at weeks 24 and 40. Nine of the vaccinees received a subtype C CN54 gp140 protein boost together with HIV-MVA.The ID/EP delivery was very well tolerated. After three HIV-DNA immunizations, no statistically significant difference was seen in the IFN-γ ELISpot response rate to Gag between HIV-DNA ID/EP recipients (5/15, 33%) and HIV-DNA ID recipients (1/7, 14%, p=0.6158). The first HIV-MVA or HIV-MVA+gp140 vaccination increased the IFN-γ ELISpot response rate to 18/19 (95%). CD4+ and/or CD8+ T cell responses to Gag or Env were demonstrable in 94% of vaccinees. A balanced CD4+ and CD8+ T cell response was noted, with 78% and 71% responders, respectively. IFN-γ and IL-2 dominated the CD4+ T cell response to Gag and Env. The CD8+ response to Gag was broader with expression of IFN-γ, IL-2, MIP-1β and/or CD107. No differences were seen between DNA vaccine groups. Binding antibodies were induced after the second HIV-MVA+/-gp140 in 93% of vaccinees to subtype C Env, with the highest titers among EP/gp140 recipients.Intradermal electroporation of HIV-DNA was well tolerated. Strong cell- and antibody-mediated immune responses were elicited by the HIV-DNA prime and HIV-MVA boosting regimen, with or without intradermal electroporation use.International Standard Randomised Controlled Trial Number (ISRCTN) 60284968

    Geological Fracture Mapping Using Electromagnetic Geotomography

    Get PDF
    This article describes the evaluation of a new geophysical technique used to map fractures between boreholes: electromagnetic geotomography used in conjunction with salt water tracers. An experiment has been performed in a granitic rock mass. Geotomographic images have been generated and compared with borehole geophysical data: neutron logs, acoustic velocity logs, caliper logs and acoustic televiewer records. Comparisons between the images and the geophysical logs indicate that clusters of fractures were detected but single fractures were not

    Doping a semiconductor to create an unconventional metal

    Full text link
    Landau Fermi liquid theory, with its pivotal assertion that electrons in metals can be simply understood as independent particles with effective masses replacing the free electron mass, has been astonishingly successful. This is true despite the Coulomb interactions an electron experiences from the host crystal lattice, its defects, and the other ~1022/cm3 electrons. An important extension to the theory accounts for the behaviour of doped semiconductors1,2. Because little in the vast literature on materials contradicts Fermi liquid theory and its extensions, exceptions have attracted great attention, and they include the high temperature superconductors3, silicon-based field effect transistors which host two-dimensional metals4, and certain rare earth compounds at the threshold of magnetism5-8. The origin of the non-Fermi liquid behaviour in all of these systems remains controversial. Here we report that an entirely different and exceedingly simple class of materials - doped small gap semiconductors near a metal-insulator transition - can also display a non-Fermi liquid state. Remarkably, a modest magnetic field functions as a switch which restores the ordinary disordered Fermi liquid. Our data suggest that we have finally found a physical realization of the only mathematically rigourous route to a non-Fermi liquid, namely the 'undercompensated Kondo effect', where there are too few mobile electrons to compensate for the spins of unpaired electrons localized on impurity atoms9-12.Comment: 17 pages 4 figures supplemental information included with 2 figure

    A large-scale study of a poultry trading network in Bangladesh: implications for control and surveillance of avian influenza viruses

    Get PDF
    Since its first report in 2007, avian influenza (AI) has been endemic in Bangladesh. While live poultry marketing is widespread throughout the country and known to influence AI dissemination and persistence, trading patterns have not been described. The aim of this study is to assess poultry trading practices and features of the poultry trading networks which could promote AI spread, and their potential implications for disease control and surveillance. Data on poultry trading practices was collected from 849 poultry traders during a cross-sectional survey in 138 live bird markets (LBMs) across 17 different districts of Bangladesh. The quantity and origins of traded poultry were assessed for each poultry type in surveyed LBMs. The network of contacts between farms and LBMs resulting from commercial movements of live poultry was constructed to assess its connectivity and to identify the key premises influencing it
    • …
    corecore