258 research outputs found

    Is there a protective effect of normal to high intellectual function on mental health in children with chronic illness?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High intellectual function is considered as a protective factor for children's mental health. Few studies have investigated the effect of intellectual function on mental health in children with chronic illness (CI). The aim of the present study was twofold: First, we asked if <it>normal to high </it>intellectual function (IQ) has a protective effect on mental health in children with CI, and secondly, if this effect is more substantial than in their peers (NCI).</p> <p>Methods</p> <p>The participants were selected among children who participated in the Bergen Child Study (BCS): 96 children with CI (the CI-group) and 96 children without CI (the NCI-group). The groups were matched on intellectual function as measured by the WISC-III by selecting the same number of children from three levels of the Full Scale IQ Score (FSIQ): "very low" (<70),"low" (70 to 84), or "normal to high" (>84). CI was reported by parents as part of a diagnostic interview (Kiddie-SADS-PL) that also generated the mental health measures used in the present study: the presence of a DSM-IV psychiatric diagnosis and the score on the Children's Global Assessment Scale.</p> <p>Results</p> <p>The risk of a psychiatric diagnosis was significantly lower for children with a normal to high FSIQ-level than for children with a very low and low FSIQ-level in the CI-group as well as in the NCI-group. The group differences were statistically non-significant for all three FSIQ-levels, and the effect of the interaction between the group-variable (CI/NCI) and the FSIQ-level was non-significant on both measures of mental health.</p> <p>Conclusion</p> <p>The present study showed a protective effect of normal to high intellectual function on children's mental health. This protective effect was not more substantial in children with CI than in children without CI.</p

    CRISPR-Cas9 screens in human cells and primary neurons identify modifiers of C9ORF72 dipeptide-repeat-protein toxicity.

    Get PDF
    Hexanucleotide-repeat expansions in the C9ORF72 gene are the most common cause of amyotrophic lateral sclerosis and frontotemporal dementia (c9ALS/FTD). The nucleotide-repeat expansions are translated into dipeptide-repeat (DPR) proteins, which are aggregation prone and may contribute to neurodegeneration. We used the CRISPR-Cas9 system to perform genome-wide gene-knockout screens for suppressors and enhancers of C9ORF72 DPR toxicity in human cells. We validated hits by performing secondary CRISPR-Cas9 screens in primary mouse neurons. We uncovered potent modifiers of DPR toxicity whose gene products function in nucleocytoplasmic transport, the endoplasmic reticulum (ER), proteasome, RNA-processing pathways, and chromatin modification. One modifier, TMX2, modulated the ER-stress signature elicited by C9ORF72 DPRs in neurons and improved survival of human induced motor neurons from patients with C9ORF72 ALS. Together, our results demonstrate the promise of CRISPR-Cas9 screens in defining mechanisms of neurodegenerative diseases

    Characterization of novel isoforms and evaluation of SNF2L/SMARCA1 as a candidate gene for X-linked mental retardation in 12 families linked to Xq25-26

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mutations in genes whose products modify chromatin structure have been recognized as a cause of X-linked mental retardation (XLMR). These genes encode proteins that regulate DNA methylation (<it>MeCP2</it>), modify histones (<it>RSK2 </it>and <it>JARID1C</it>), and remodel nucleosomes through ATP hydrolysis (<it>ATRX</it>). Thus, genes encoding other chromatin modifying proteins should also be considered as disease candidate genes. In this work, we have characterized the <it>SNF2L </it>gene, encoding an ATP-dependent chromatin remodeling protein of the ISWI family, and sequenced the gene in patients from 12 XLMR families linked to Xq25-26.</p> <p>Methods</p> <p>We used an <it>in silico </it>and RT-PCR approach to fully characterize specific SNF2L isoforms. Mutation screening was performed in 12 patients from individual families with syndromic or non-syndromic XLMR. We sequenced each of the 25 exons encompassing the entire coding region, complete 5' and 3' untranslated regions, and consensus splice-sites.</p> <p>Results</p> <p>The <it>SNF2L </it>gene spans 77 kb and is encoded by 25 exons that undergo alternate splicing to generate several distinct transcripts. Specific isoforms are generated through the alternate use of exons 1 and 13, and by the use of alternate donor splice sites within exon 24. Alternate splicing within exon 24 removes a NLS sequence and alters the subcellular distribution of the SNF2L protein. We identified 3 single nucleotide polymorphisms but no mutations in our 12 patients.</p> <p>Conclusion</p> <p>Our results demonstrate that there are numerous splice variants of SNF2L that are expressed in multiple cell types and which alter subcellular localization and function. <it>SNF2L </it>mutations are not a cause of XLMR in our cohort of patients, although we cannot exclude the possibility that regulatory mutations might exist. Nonetheless, <it>SNF2L </it>remains a candidate for XLMR localized to Xq25-26, including the Shashi XLMR syndrome.</p

    Characterization of novel isoforms and evaluation of SNF2L/SMARCA1 as a candidate gene for X-linked mental retardation in 12 families linked to Xq25-26

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mutations in genes whose products modify chromatin structure have been recognized as a cause of X-linked mental retardation (XLMR). These genes encode proteins that regulate DNA methylation (<it>MeCP2</it>), modify histones (<it>RSK2 </it>and <it>JARID1C</it>), and remodel nucleosomes through ATP hydrolysis (<it>ATRX</it>). Thus, genes encoding other chromatin modifying proteins should also be considered as disease candidate genes. In this work, we have characterized the <it>SNF2L </it>gene, encoding an ATP-dependent chromatin remodeling protein of the ISWI family, and sequenced the gene in patients from 12 XLMR families linked to Xq25-26.</p> <p>Methods</p> <p>We used an <it>in silico </it>and RT-PCR approach to fully characterize specific SNF2L isoforms. Mutation screening was performed in 12 patients from individual families with syndromic or non-syndromic XLMR. We sequenced each of the 25 exons encompassing the entire coding region, complete 5' and 3' untranslated regions, and consensus splice-sites.</p> <p>Results</p> <p>The <it>SNF2L </it>gene spans 77 kb and is encoded by 25 exons that undergo alternate splicing to generate several distinct transcripts. Specific isoforms are generated through the alternate use of exons 1 and 13, and by the use of alternate donor splice sites within exon 24. Alternate splicing within exon 24 removes a NLS sequence and alters the subcellular distribution of the SNF2L protein. We identified 3 single nucleotide polymorphisms but no mutations in our 12 patients.</p> <p>Conclusion</p> <p>Our results demonstrate that there are numerous splice variants of SNF2L that are expressed in multiple cell types and which alter subcellular localization and function. <it>SNF2L </it>mutations are not a cause of XLMR in our cohort of patients, although we cannot exclude the possibility that regulatory mutations might exist. Nonetheless, <it>SNF2L </it>remains a candidate for XLMR localized to Xq25-26, including the Shashi XLMR syndrome.</p

    T4-Related Bacteriophage LIMEstone Isolates for the Control of Soft Rot on Potato Caused by ‘Dickeya solani’

    Get PDF
    The bacterium ‘Dickeya solani’, an aggressive biovar 3 variant of Dickeya dianthicola, causes rotting and blackleg in potato. To control this pathogen using bacteriophage therapy, we isolated and characterized two closely related and specific bacteriophages, vB_DsoM_LIMEstone1 and vB_DsoM_LIMEstone2. The LIMEstone phages have a T4-related genome organization and share DNA similarity with Salmonella phage ViI. Microbiological and molecular characterization of the phages deemed them suitable and promising for use in phage therapy. The phages reduced disease incidence and severity on potato tubers in laboratory assays. In addition, in a field trial of potato tubers, when infected with ‘Dickeya solani’, the experimental phage treatment resulted in a higher yield. These results form the basis for the development of a bacteriophage-based biocontrol of potato plants and tubers as an alternative for the use of antibiotics

    MICALs in control of the cytoskeleton, exocytosis, and cell death

    Get PDF
    MICALs form an evolutionary conserved family of multidomain signal transduction proteins characterized by a flavoprotein monooxygenase domain. MICALs are being implicated in the regulation of an increasing number of molecular and cellular processes including cytoskeletal dynamics and intracellular trafficking. Intriguingly, some of these effects are dependent on the MICAL monooxygenase enzyme and redox signaling, while other functions rely on other parts of the MICAL protein. Recent breakthroughs in our understanding of MICAL signaling identify the ability of MICALs to bind and directly modify the actin cytoskeleton, link MICALs to the docking and fusion of exocytotic vesicles, and uncover MICALs as anti-apoptotic proteins. These discoveries could lead to therapeutic advances in neural regeneration, cancer, and other diseases

    Enhancing return-to-work in cancer patients, development of an intervention and design of a randomised controlled trial

    Get PDF
    ABSTRACT: BACKGROUND: Compared to healthy controls, cancer patients have a higher risk of unemployment, which has negative social and economic impacts on the patients and on society at large. Therefore, return-to-work of cancer patients needs to be improved by way of an intervention. The objective is to describe the development and content of a work-directed intervention to enhance return-to-work in cancer patients and to explain the study design used for evaluating the effectiveness of the intervention. METHODS: Development and content of the intervention The work-directed intervention has been developed based on a systematic literature review of work-directed interventions for cancer patients, factors reported by cancer survivors as helping or hindering their return-to-work, focus group and interview data for cancer patients, health care professionals, and supervisors, and vocational rehabilitation literature. The work-directed intervention consists of: 1) 4 meetings with a nurse at the treating hospital department to start early vocational rehabilitation, 2) 1 meeting with the participant, occupational physician, and supervisor to make a return-to-work plan, and 3) letters from the treating physician to the occupational physician to enhance communication. Study design to evaluate the intervention The treating physician or nurse recruits patients before the start of initial treatment. Patients are eligible when they have a primary diagnosis of cancer, will be treated with curative intent, are employed at the time of diagnosis, are on sick leave, and are between 18 and 60 years old. After the patients have given informed consent and have filled out a baseline questionnaire, they are randomised to either the control group or to the intervention group and receive either care as usual or the work-directed intervention, respectively. Primary outcomes are return-to-work and quality of life. The feasibility of the intervention and direct and indirect costs will be determined. Outcomes will be assessed by a questionnaire at baseline and at 6, 12, 18, and 24 months after baseline. DISCUSSION: This study will provide information about the effectiveness of a work-directed intervention for cancer patients. The intention is to implement the intervention in normal care if it has been shown effective. Trial registration: NTR165
    corecore