129 research outputs found

    Increased epidermal thickness and abnormal epidermal differentiation in keloid scars

    Get PDF
    Background: The pathogenesis underlying keloid formation is still poorly understood. Research has focused mostly on dermal abnormalities, while the epidermis has not yet been studied. Objectives: To identify differences within the epidermis of mature keloid scars compared with normal skin and mature normotrophic and hypertrophic scars. Methods: Rete ridge formation and epidermal thickness were evaluated in tissue sections. Epidermal proliferation was assessed using immunohistochemistry (Ki67, keratins 6, 16 and 17) and with an in vitro proliferation assay. Epidermal differentiation was evaluated using immunohistochemistry (keratin 10, involucrin, loricrin, filaggrin, SPRR2, SKALP), reverse-transcriptase polymerase chain reaction (involucrin) and transmission electron microscopy (stratum corneum). Results: All scars showed flattening of the epidermis. A trend of increasing epidermal thickness correlating to increasing scar abnormality was observed when comparing normal skin, normotrophic scars, hypertrophic scars and keloids. No difference in epidermal proliferation was observed. Only the early differentiation marker involucrin showed abnormal expression in scars. Involucrin was restricted to the granular layer in healthy skin, but showed panepidermal expression in keloids. Normotrophic scars expressed involucrin in the granular and upper spinous layers, while hypertrophic scars resembled normotrophic scars or keloids. Abnormal differentiation was associated with ultrastructural disorganization of the stratum corneum in keloids compared with normal skin. Conclusions: Keloids showed increased epidermal thickness compared with normal skin and normotrophic and hypertrophic scars. This was not due to hyperproliferation, but possibly caused by abnormal early terminal differentiation, which affects stratum corneum formation. Our findings indicate that the epidermis is associated with keloid pathogenesis and identify involucrin as a potential diagnostic marker for abnormal scarring

    A high density linkage map of the bovine genome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent technological advances have made it possible to efficiently genotype large numbers of single nucleotide polymorphisms (SNPs) in livestock species, allowing the production of high-density linkage maps. Such maps can be used for quality control of other SNPs and for fine mapping of quantitative trait loci (QTL) via linkage disequilibrium (LD).</p> <p>Results</p> <p>A high-density bovine linkage map was constructed using three types of markers. The genotypic information was obtained from 294 microsatellites, three milk protein haplotypes and 6769 SNPs. The map was constructed by combining genetic (linkage) and physical information in an iterative mapping process. Markers were mapped to 3,155 unique positions; the 6,924 autosomal markers were mapped to 3,078 unique positions and the 123 non-pseudoautosomal and 19 pseudoautosomal sex chromosome markers were mapped to 62 and 15 unique positions, respectively. The linkage map had a total length of 3,249 cM. For the autosomes the average genetic distance between adjacent markers was 0.449 cM, the genetic distance between unique map positions was 1.01 cM and the average genetic distance (cM) per Mb was 1.25.</p> <p>Conclusion</p> <p>There is a high concordance between the order of the SNPs in our linkage map and their physical positions on the most recent bovine genome sequence assembly (Btau 4.0). The linkage maps provide support for fine mapping projects and LD studies in bovine populations. Additionally, the linkage map may help to resolve positions of unassigned portions of the bovine genome.</p

    Importance of lysosomal cysteine proteases in lung disease

    Get PDF
    The human lysosomal cysteine proteases are a family of 11 proteases whose members include cathepsins B, C, H, L, and S. The biology of these proteases was largely ignored for decades because of their lysosomal location and the belief that their function was limited to the terminal degradation of proteins. In the past 10 years, this view has changed as these proteases have been found to have specific functions within cells. This review highlights some of these functions, specifically their roles in matrix remodeling and in regulating the immune response, and their relationship to lung diseases

    Gene expression and matrix turnover in overused and damaged tendons

    Get PDF
    Chronic, painful conditions affecting tendons, frequently known as tendinopathy, are very common types of sporting injury. The tendon extracellular matrix is substantially altered in tendinopathy, and these changes are thought to precede and underlie the clinical condition. The tendon cell response to repeated minor injuries or “overuse” is thought to be a major factor in the development of tendinopathy. Changes in matrix turnover may also be effected by the cellular response to physical load, altering the balance of matrix turnover and changing the structure and composition of the tendon. Matrix turnover is relatively high in tendons exposed to high mechanical demands, such as the supraspinatus and Achilles, and this is thought to represent either a repair or tissue maintenance function. Metalloproteinases are a large family of enzymes capable of degrading all of the tendon matrix components, and these are thought to play a major role in the degradation of matrix during development, adaptation and repair. It is proposed that some metalloproteinase enzymes are required for the health of the tendon, and others may be damaging, leading to degeneration of the tissue. Further research is required to investigate how these enzyme activities are regulated in tendon and altered in tendinopathy. A profile of all the metalloproteinases expressed and active in healthy and degenerate tendon is required and may lead to the development of new drug therapies for these common and debilitating sports injuries

    Proteomic Identification of IPSE/alpha-1 as a Major Hepatotoxin Secreted by Schistosoma mansoni Eggs

    Get PDF
    The flatworm disease, schistosomiasis, is a major public health problem in sub-Saharan Africa, South America and East Asia. A hallmark of infection with Schistosoma mansoni is the immune response to parasite eggs trapped in the liver and other organs. This response involves an infiltration of cells that surround the parasite egg forming a “granuloma.” In mice deprived of T-cells, this granulomatous response is lacking, and toxic products released by eggs quickly cause liver damage and death. Thus the granulomata protect the host from toxic egg products. Only one hepatotoxic molecule, omega-1, has been described to date. We set out to identify other S. mansoni egg hepatotoxins using liver cells grown in culture. We first showed that live eggs, their secretions, and pure omega-1 are toxic. Using a physical separation technique to prepare fractions from whole egg secretions, we identified the presence of IPSE/alpha-1, a protein that is known to strongly influence the immune system. We showed that IPSE/alpha-1 is also hepatotoxic, and that toxicity of both omega-1 and IPSE/alpha-1 can be prevented by first mixing the proteins with specific neutralizing antibodies. Both proteins constitute the majority of hepatotoxicity released by eggs

    Heritability and Phenotypic Variation of Canine Hip Dysplasia Radiographic Traits in a Cohort of Australian German Shepherd Dogs

    Get PDF
    Canine Hip Dysplasia (CHD) is a common, painful and debilitating orthopaedic disorder of dogs with a partly genetic, multifactorial aetiology. Worldwide, potential breeding dogs are evaluated for CHD using radiographically based screening schemes such as the nine ordinally-scored British Veterinary Association Hip Traits (BVAHTs). The effectiveness of selective breeding based on screening results requires that a significant proportion of the phenotypic variation is caused by the presence of favourable alleles segregating in the population. This proportion, heritability, was measured in a cohort of 13,124 Australian German Shepherd Dogs born between 1976 and 2005, displaying phenotypic variation for BVAHTs, using ordinal, linear and binary mixed models fitted by a Restricted Maximum Likelihood method. Heritability estimates for the nine BVAHTs ranged from 0.14–0.24 (ordinal models), 0.14–0.25 (linear models) and 0.12–0.40 (binary models). Heritability for the summed BVAHT phenotype was 0.30±0.02. The presence of heritable variation demonstrates that selection based on BVAHTs has the potential to improve BVAHT scores in the population. Assuming a genetic correlation between BVAHT scores and CHD-related pain and dysfunction, the welfare of Australian German Shepherds can be improved by continuing to consider BVAHT scores in the selection of breeding dogs, but that as heritability values are only moderate in magnitude the accuracy, and effectiveness, of selection could be improved by the use of Estimated Breeding Values in preference to solely phenotype based selection of breeding animals

    Recent Advances in Childhood Arterial Ischemic Stroke

    Get PDF
    Although many underlying diseases have been reported in the setting of childhood arterial ischemic stroke, emerging research demonstrates that non-atherosclerotic intracerebral arteriopathies in otherwise healthy children are prevalent. Minor infections may play a role in arteriopathies that have no other apparent underlying cause. Although stroke in childhood differs in many aspects from adult stroke, few systematic studies specific to pediatrics are available to inform stroke management. Treatment trials of pediatric stroke are required to determine the best strategies for acute treatment and secondary stroke prevention. The high cost of pediatric stroke to children, families, and society demands further study of its risk factors, management, and outcomes. This review focuses on the recent findings in childhood arterial ischemic stroke
    corecore