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Summary

Background The pathogenesis underlying keloid formation is still poorly under-
stood. Research has focused mostly on dermal abnormalities, while the epidermis
has not yet been studied.
Objectives To identify differences within the epidermis of mature keloid scars com-
pared with normal skin and mature normotrophic and hypertrophic scars.
Methods Rete ridge formation and epidermal thickness were evaluated in tissue
sections. Epidermal proliferation was assessed using immunohistochemistry
(Ki67, keratins 6, 16 and 17) and with an in vitro proliferation assay. Epider-
mal differentiation was evaluated using immunohistochemistry (keratin 10,
involucrin, loricrin, filaggrin, SPRR2, SKALP), reverse-transcriptase polymerase
chain reaction (involucrin) and transmission electron microscopy (stratum
corneum).
Results All scars showed flattening of the epidermis. A trend of increasing epider-
mal thickness correlating to increasing scar abnormality was observed when com-
paring normal skin, normotrophic scars, hypertrophic scars and keloids. No
difference in epidermal proliferation was observed. Only the early differentiation
marker involucrin showed abnormal expression in scars. Involucrin was restricted
to the granular layer in healthy skin, but showed panepidermal expression in
keloids. Normotrophic scars expressed involucrin in the granular and upper spi-
nous layers, while hypertrophic scars resembled normotrophic scars or keloids.
Abnormal differentiation was associated with ultrastructural disorganization of
the stratum corneum in keloids compared with normal skin.
Conclusions Keloids showed increased epidermal thickness compared with normal
skin and normotrophic and hypertrophic scars. This was not due to hyperprolif-
eration, but possibly caused by abnormal early terminal differentiation, which
affects stratum corneum formation. Our findings indicate that the epidermis is
associated with keloid pathogenesis and identify involucrin as a potential diag-
nostic marker for abnormal scarring.

What’s already known about this topic?

• With regards to keloid scarring, the focus has always been on the dermal compart-

ment when studying the underlying pathogenesis.

• However, we know that epidermal–dermal interactions are essential in wound

healing and, as such, the epidermis of keloid scars is worth further investigation.

• While epidermal abnormalities have already been described in hypertrophic scars,

the literature on the keloid epidermis remains inconclusive.
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What does this study add?

• We show that keloids have increased epidermal thickness compared with normal

skin and normotrophic and hypertrophic scars.

• This was not due to hyperproliferation, but possibly caused by abnormal early ter-

minal differentiation, which affects stratum corneum formation.

What is the translational message?

• Our findings indicate that the epidermis is associated with keloid pathogenesis and

identify involucrin as a potential diagnostic marker for abnormal scarring.

The keloid epidermis is often described as appearing histologi-

cally normal,1,2 and as a result it is frequently overlooked.

However, several lines of evidence suggest that keloid-derived

keratinocytes might not be mere bystanders in the process of

abnormal scar formation. In normal wound healing, fibroblast

behaviour is known to be influenced by keratinocytes, and the

interactions between these two cell types contribute essential

signals for normal scar formation via the secretion of soluble

mediators.3–9 Therefore it is possible that keratinocytes also

participate in abnormal wound healing processes leading to

the formation of keloid scars.

In fact, epidermal abnormalities have already been described

in another type of abnormal scarring.3,10,11 Young hyper-

trophic scars showed increased proliferation, increased epider-

mal thickness and increased expression of the keratinocyte

hyperproliferation and activation markers keratins 6, 16 and

17. Upon further maturation, this hyperactivated phenotype

diminished and could eventually no longer be detected, but

these early epidermal abnormalities do suggest that the epider-

mal compartment is involved in the pathogenesis of this

abnormal scar.3,10,11 However, while both hypertrophic scars

and keloids fall into the abnormal scarring spectrum, they are

not necessarily one and the same. Several important differ-

ences exist between the two, but most importantly keloids are

distinguished clinically from hypertrophic scars by their inva-

sive and often relentless growth into the surrounding healthy

tissue.12 For this reason, it is important to maintain this dis-

tinction in research, as findings relating to hypertrophic scars

should not be automatically extrapolated to keloids.

While such immunohistochemical abnormalities of the epi-

dermis have not previously been demonstrated for keloid

scars, abnormalities in keloid-derived keratinocytes cultured

in vitro have been reported.13–20 Keloid keratinocytes show

intrinsic abnormalities, such as increased transforming growth

factor-b2 expression2 and altered gene expression,20 and are

capable of interacting with keloid-derived fibroblasts to stimu-

late keloid scar formation.2,8,19 Furthermore, keloid ker-

atinocytes have been shown to induce a keloid scar phenotype

(e.g. increased collagen production) in fibroblasts derived

from unaffected normal skin as well.14–16 Taken together,

these results strongly suggest that the keloid epidermis might

in fact not be as ‘normal’ as previously assumed, and could

thus play an important role in keloid scar formation.

This study aimed to investigate the epidermal characteristics of

mature keloid scars compared with normal skin and other mature

scars (normotrophic and hypertrophic), and in turn help to iden-

tify novel biomarkers for keloid scarring. The possibility of

heterogeneity within a keloid scar was also considered in our

study design, as clinical observations suggest a possible distinc-

tion between the periphery and the centre of keloid scars. The

periphery is often thought to be responsible for the active inva-

sive growth into the surrounding normal skin, as opposed to the

less elevated central area, which shows signs of clinical regression

over time.1,12,21 For this reason, keloid scars were divided into

peripheral and central regions prior to comparison with normal

skin and normotrophic and hypertrophic scars with respect to

epidermal morphology, proliferation and differentiation.

Materials and methods

Tissue biopsies of normal skin, normotrophic scars, hyper-

trophic scars and keloid scars were obtained from the plastic

surgery departments of the VU Medical Centre and the St Anto-

nius Hospital (normal skin only). This was in compliance with

the Dutch ‘Code for Proper Secondary Use of Human Tissue’

in accordance with the Declaration of Helsinki. Scars were

selected for inclusion by an experienced scar expert (plastic

surgeon; author F.B.N.) and were included only if patients had

given consent for their coded use in research. All scars were at

least 1 year old to ensure the inclusion of mature scars. Normal

skin was included only if patients had not elected to opt out

after receiving written information about the anonymous sec-

ondary use of their material. Table 1 lists the donor character-

istics and Tables S1–S4 (see Supporting Information) give

detailed donor characteristics per experiment.

For (immuno)histochemical analysis, keloids were further

subdivided into peripheral and central regions. Peripheral

keloid scar was defined as the outer margin of the keloid

growth bordering on surrounding healthy skin, and central

keloid scar was defined as the central region within the keloid.

When paraffin embedding the tissue for further analysis, care

was taken that the plane of the tissue section was always
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perpendicular to the plane of dissection, after subdivision into

peripheral and central regions.

Histological analysis

Haematoxylin and eosin-stained 5-lm paraffin-embedded tis-

sue sections were used to assess rete ridge formation and epi-

dermal thickness. For rete ridges, semiquantitative analysis was

performed to determine their presence in all tissue samples by

evaluating the depth of ridges (scored as 0, absent; 1, superfi-

cial; 2, average; 3, deep) and the frequency of occurrence

across the entire longitudinal epidermal plane (scored as 1,

0–24%; 2, 25–49%; 3, 50–74%; 4, 75–100%) and combining

both for a cumulative score. Epidermal thickness was quantified

by counting the number of keratinocyte cell layers at six points

in the tissue sections (magnification 9200; three measurements

on random rete ridges and three on random nonrete ridges).

Immunohistochemical staining

Immunohistochemical staining was performed on deparaf-

finized, formalin-fixed tissue sections to assess epidermal pro-

liferation (Ki67), differentiation [keratin 10, involucrin,

loricrin, filaggrin, small proline-rich region protein (SPRR)2

and skin-derived antileucoproteinase (SKALP)] and activation/

hyperproliferation (keratin 6, 16 and 17) as listed in Table 2.

Immunohistochemical staining was scored as (�) absence of

staining; (+) normal staining pattern; (++) increased number

of positively stained cells; (+++) strongly increased number of

positively stained cells. For the Ki67 proliferation index, 100

basal cells were counted in three random locations in a tissue

section (magnification 9100), after which the number of pos-

itive cells along this length of the epidermis was determined.

The proliferation index was defined as the average percentage

of Ki67-positive nuclei.

Table 1 Summary of characteristics of the donors and associated tissue samples for each of the experiments

Donors Tissue type Location

Age

(years) Previous treatment Aetiology Skin colour

Immunohistochemistry
5 Normal skin Breast, abdomen,

thigh

Unknown Not applicable Not applicable Unknown

10 Normal scar Face, breast, sternum 15–60 Usually none Unknown White, unknown

10 Hypertrophic
scar

Abdomen, flank,
breast, sternum

15–54 Usually none Unknown White, dark brown,
unknown

10 Keloid scar:
periphery

and centre

Ear, sternum,
pubic region

13–40 Excision, silicone sheets,
corticosteroid injections,

laser therapy, radiotherapy,
cryotherapy (1 donor),

unknown

Surgery, insect bite,
piercing, trauma

(blunt and sharp),
unknown

White, brown,
dark brown, unknown

Keratinocyte proliferation assay

5 Normal skin Breast 18–53 Not applicable Not applicable White, brown
5 Normal scar Abdomen, neck, back 18–54 None, unknown (1 donor) Surgery, unknown White

3 Hypertrophic
scar

Abdomen, breast,
upper extremity

24–40 Excision, corticosteroid
injections, none

Surgery White

6 Keloid scar Abdomen, ear,
breast, neck,

shoulder, chest

18–49 Excision, corticosteroid
injections, none

Surgery, acne,
unknown

White, brown,
dark brown

Involucrin reverse-transcriptase polymerase chain reaction

10 Normal skin Abdomen, breast,
lower extremity

34–48 Not applicable Not applicable White, brown,
unknown

10 Normal scar Abdomen, neck,
back, flank,

lower extremity

24–60 None Surgery, dog bite,
wound dehiscence,

unknown

White, brown

4 Hypertrophic

scar

Breast, lip, unknown 24–42 Excision, corticosteroid

injections, none

Surgery, trauma White, brown

7 Keloid scar Abdomen, occiput,

face, thorax,

ear, labia minora

32–49 Excision, corticosteroid

injections, laser

therapy, none

Surgery, wound,

inflammation

Brown, dark brown

Transmission electron microscopy

3 Normal skin Abdomen, breast 29–48 Not applicable Not applicable White, brown
3 Keloid scar Abdomen, breast 40–54 Excision, corticosteroid

injections

Acne, unknown Brown, dark brown

There was an equal distribution of both sexes (except for normal scars used for immunohistochemistry experiments: mostly female; and the

keratinocyte proliferation assays and transmission electron microscopy experiments: mostly female), and scars were ≥ 1 year old.

© 2016 The Authors. British Journal of Dermatology
published by John Wiley & Sons Ltd on behalf of British Association of Dermatologists

British Journal of Dermatology (2017) 176, pp116–126

118 Epidermal abnormalities in keloid scars, G.C. Limandjaja et al.



Keratinocyte culture and proliferation experiments

Tissue was dissected into smaller squares and incubated in dis-

pase II solution (Roche Diagnostics GmbH, Mannheim, Ger-

many) overnight at 4 °C. Keratinocytes were isolated and

cultured as described previously.22 Keratinocytes were then

seeded at 3 9 106 cells on 0�5-lg cm�2 collagen IV-coated

9-cm dishes and cultured in keratinocyte culture medium

comprising Dulbecco’s Modified Eagle Medium (Lonza, Ver-

viers, Belgium) and F12-HAM nutrient mixture plus L-gluta-

mine (HAMF12; Gibco, Grand Island, NY, U.S.A.) in a 3 : 1

ratio, with 1% UltroserG (BioSepra, Cergy-St-Christophe,

France), 1% PenStrep (Gibco), 2-ng mL�1 human keratinocyte

growth factor, 0�09-lmol L�1 insulin, 1-lmol L�1 hydrocor-

tisone and 1-lmol L�1 (�)-isoproterenol hydrochloride. The

medium was changed twice a week.

Cells were passaged at approximately 80% confluence. Pas-

sage 0 keratinocytes were trypsinized with 0�05% trypsin

(Gibco), counted using the Adam AccuChip 49 Kit with an

automatic cell counter (Digital Bio; NanoEnTek Inc., Seoul,

Korea) and plated at 1�5 9 106 keratinocytes per 9-cm-

diameter Petri dish on day 0. Medium was changed once on

day 2, and cells were trypsinized and counted again on day 5

to determine proliferation of passage 1 keratinocytes. The

readout was the fold increase in cell number over 5 days,

which was calculated as the number of keratinocytes on day 5

divided by 1�5 9 106. All culture components were obtained

from Sigma-Aldrich (St Louis, MO, U.S.A.) unless stated

otherwise.

Involucrin mRNA expression in scars

Biopsies (3–6-mm diameter) were taken from normal skin,

normotrophic scars, hypertrophic scars and keloid scars (three

donors per tissue type). Excess dermal tissue was removed

from the biopsies before snap freezing and subsequent storage

at �80 °C. Samples were disrupted and homogenized in Tis-

sueLyser II (Qiagen GmbH, Hilden, Germany), then snap

frozen again and stored at �80 °C. RNA isolation was per-

formed using QiaShredder kits and RNeasy� Mini Kits with

on-column DNAse digestion (Qiagen) according to the manu-

facturer’s protocols, and stored at �80 °C. The Nanodrop

spectrophotometer (Nanodrop Technologies Inc., Wilmington,

DE, U.S.A.) was used to measure total RNA concentration.

Real-time polymerase chain reaction (PCR) reactions were per-

formed essentially as described previously23: 2 lL of cDNA

was amplified in a 25 lL total volume containing 9�5 lL
RNAse-free H2O, 12�5 lL SYBRGreen iQ™ SYBR� Green

Supermix (Bio-Rad Laboratories, Hercules, CA, U.S.A.) and

1 lL of a quantitative PCR primer pair for involucrin

(HP208665) or the housekeeping genes HPRT1 (HP200179)

and GAPDH (HP205798; all OriGene, Rockville, MD, U.S.A).

Involucrin expression (2�ΔCt) was normalized with the geo-

metric mean of both housekeeping genes.

Transmission electron microscopy

Biopsies (3-mm diameter) of normal skin and keloid scars

were washed in phosphate-buffered saline before immersion

in a fixative consisting of 4% paraformaldehyde and 1% glu-

taraldehyde in a 0�1 mol L�1 sodium cacodylate buffer (pH

7�4) After fixation, biopsies were washed in distilled water,

osmicated for 60 min in 1% OsO4 in water, and washed again

in distilled water. Biopsies were block stained overnight in

1�5% aqueous uranyl acetate (for contrast enhancement),

dehydrated through a series of ethanol, and then embedded in

LX-112 (Ladd Research, Williston, VT, U.S.A.). Ultrathin sec-

tions (80 nm) were cut with a diamond knife, collected on

Formvar-coated grids, and stained with uranyl acetate and lead

citrate. Sections were examined with an FEI Tecnai-12 G2

Table 2 Immunohistochemical staining protocols

Target marker Antibody source
Dilution
of antibody

Supplementary

treatments prior
to antibody addition

Epidermal (hyper)proliferation

Ki67 Mouse monoclonal, clone MIB-1 (DakoCytomation, Glostrup, Denmark) 1 : 50 A
Keratin 6 Murine monoclonal, clone Ks6.KA12 (Monosan, Uden, the Netherlands) 1 : 150 A

Keratin 16 Murine monoclonal, clone LL025 (Monosan) 1 : 20 A
Keratin 17 Murine monoclonal, clone Ks17.E3 (Monosan) 1 : 40 A

Epidermal differentiation
Keratin 10 Murine monoclonal, clone DE-K10 (Progen, Heidelberg, Germany) 1 : 500 A + B

Involucrin Mouse monoclonal, clone SY5 (Novocastra, Newcastle, U.K.) 1 : 1000 C
Loricrin Rabbit polyclonal, clone AF62 (Covance, Emeryville CA, U.S.A.) 1 : 500 C + D

Filaggrin Rabbit polyclonal, catalogue no. PRB-417P-100 (Covance) 1 : 500 A
SPRR Rabbit polyclonal, catalogue no. LS-B630 (LifeSpan BioSciences, Seattle, WA, U.S.A.) 1 : 500 C + D

Elafin/SKALP Mouse monoclonal, clone TRAB20 (Hycult Biotechnology, Canton, MA, U.S.A.) 1 : 400 B

SPRR, small proline-rich region protein 2; SKALP, skin-derived antileucoproteinase. Supplementary treatments prior to primary antibody incu-

bation included A, heat-induced antigen retrieval with 0�01-mol L�1 citrate buffer pH 6�0; B, 15-min incubation with pepsin; C, blocking of

endogenous peroxidase by 20-min incubation in a 0�3% H2O2 in methanol solution; and D, 15-min preincubation with goat serum.
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Spirit Bio twin electron microscope (Thermo Fisher Scientific

Inc., Waltham, MA, U.S.A.).

Statistical analysis

The results are presented as the mean � SEM, except for indi-

vidual data plots with the median. Experiments were per-

formed with at least three donors per tissue type.

Experimental groups were compared with one another using a

one-way ANOVA with post hoc Tukey’s honest significant differ-

ence tests (epidermal proliferation index and keratinocyte pro-

liferation index) or a Kruskal–Wallis test with post hoc Dunn’s

multiple comparisons tests (presence of rete ridges, epidermal

thickness and involucrin expression), depending on the out-

come of normality testing (Shapiro–Wilk test) of the residuals

(errors). Differences were considered statistically significant at

*P < 0�05, **P < 0�01 or ***P < 0�001. Statistical tests were

performed using GraphPad Prism version 6 (GraphPad Soft-

ware Inc., San Diego, CA, U.S.A.).

Results

Reduced rete ridge formation in scars and increased

epidermal thickness in keloids

From haematoxylin and eosin-stained tissue sections it is

clearly apparent that both abnormal scar types (hypertrophic

scars and keloids) show a thicker and flattened epidermis than

normal skin and normotrophic scars (Fig. 1); this was particu-

larly obvious in keloids. Semiquantitative analysis showed that

all scar types had decreased rete ridge formation compared

with normal skin (P < 0�05), with no difference between the

scar types (Fig. 2a).

To quantify differences in epidermal thickness between scar

types, the number of viable epidermal cell layers was deter-

mined. There was a clear trend of increasing epidermal thick-

ness with increasing abnormality of the scar types when

compared with normal skin (Fig. 2b). However, only keloid

scars showed significantly increased epidermal thickness,

Fig 1. Increased involucrin expression in keloid scars. Representative (immuno)histochemical stainings for normal skin (Nskin, n = 5),

normotrophic scar (Nscar, n = 10), hypertrophic scar (Hscar, n = 10), keloid scar periphery (P-Kscar, n = 10) and keloid scar central region

(Cs-Kscar, n = 10). Samples are not donor matched. Patient information can be found in Table 1 and Tables S1–S4. Histology (haematoxylin and

eosin, H&E); proliferation (Ki67) and differentiation (keratin 10, K10; loricrin, LOR; involucrin, INV) marker localization are shown. Scale

bar = 50 lm.
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compared with both normal skin (P < 0�01) and nor-

motrophic scars (P < 0�01).

Keloid scars exhibit normal epidermal proliferation

As the keloid epidermis had more cell layers than normal skin

and normotrophic scars, we next determined whether this

could be related to increased epidermal proliferation. There-

fore tissue sections were stained with immunohistochemical

markers for epidermal activation and (hyper)proliferation. In

normal healthy skin, keratins 6, 16 and 17 were absent. Gen-

erally, these keratins were also absent from scars, showing

only weak intermittent focal staining in at most two out of 10

scars of any type (Table 3). The percentage of actively cycling

Ki67-positive cells in the basal layer of the epidermis was also

not increased in any of the scar types compared with normal

skin (Figs 1, 2c). No distinction was found between the dif-

ferent keloid scar regions.

To confirm further that epidermal thickness was not the

result of increased keratinocyte proliferation, in vitro prolifera-

tion experiments were performed (Fig. 2d). As there was no

difference in the Ki67 proliferation index between the periph-

eral and central regions of the keloid (Fig. 2c), keratinocytes

were isolated from the entirety of the keloid scars. During a

5-day culture period, no increase in proliferation rate was

observed in keratinocytes derived from the abnormal scars

compared with normal skin. In fact, keloid keratinocytes

showed significantly lower proliferation rates than nor-

motrophic scar keratinocytes (P < 0�05). Taken together, these

results suggest that the increased epidermal thickness found in

keloid scars is not related to increased proliferation.

Increased expression of the terminal differentiation

marker involucrin in abnormal scars

Having established that increased epidermal thickness was not

related to increased epidermal proliferation, we next deter-

mined whether it could be related to abnormal differentiation

(Fig. 1; Table 3). All scar types showed normal expression of

the differentiation markers keratin 10, loricrin, filaggrin and

SPRR2, with weak intermittent SKALP staining in the granular

layer of one of 10 peripheral keloid scars and two of 10 cen-

tral keloid scars. However, involucrin showed truly aberrant

expression in abnormal scars. In normal skin, involucrin stain-

ing was limited to the granular layer of the epidermis. In con-

trast, both the granular and spinous layers stained strongly for

involucrin in seven of 10 keloid peripheral and nine of 10

keloid central tissue samples, with extension into the basal

layer in a few cases. It should be noted that increased expres-

sion of involucrin was always present in at least one of the

two regions within the keloid scars; in effect all keloid scar

samples showed overexpression. In normotrophic scars,

involucrin expression extended only slightly down to the

upper spinous layers. Hypertrophic scars showed a staining

Fig 2. Abnormal scars show decreased

presence of rete ridges, increased epidermal

thickness and normal proliferation but

abnormal differentiation. Analysis of (a)

presence of rete ridges, (b) epidermal

thickness and (c) number of positively Ki67-

stained basal cells on tissue sections in normal

skin (Nskin, n = 5), normotrophic scar

(Nscar, n = 10), hypertrophic scar

(Hscar, n = 10), keloid scar periphery

(P-Kscar, n = 10) and keloid central region

(Cs-Kscar, n = 10). (d) Keratinocyte

proliferation assay with passage 1

keratinocytes cultured for 5 days. Symbols

represent individual donor cultures; five

Nskin, five Nscar, three Hscar, six Kscar. Data

are shown as the mean � SEM with

*P < 0�05, **P < 0�01 and ***P < 0�001. (e)
Scatter plots showing median values of

involucrin mRNA expression (2�ΔCt) in

epidermal biopsies from 10 Nskin, 10 Nscar,

four Hscar and seven Kscar, normalized to the

geometric mean of both housekeeping genes:

GAPDH and HPRT1. Different scars were not

donor matched.
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pattern that was intermediate between normal scars and keloid

scars, with six of 10 scars showing similar expression to nor-

mal scars and four of 10 scars showing increased involucrin

expression similar to that of keloid scars.

This increased involucrin expression in keloid keratinocytes

was further confirmed with reverse-transcriptase PCR on RNA

isolated from the epidermis of fresh tissue biopsies (Fig. 2e).

As increased expression of involucrin was always present in at

least one of the two regions, the entire keloid scar was used.

In line with our immunohistochemical results, involucrin

mRNA expression was significantly increased in the epidermis

of keloid scars compared with normal skin. This suggests that

increased epidermal thickness is related to abnormal differenti-

ation, as observed by increased expression of the terminal dif-

ferentiation marker involucrin, rather than increased

proliferation.

Disorganization of the stratum corneum in keloid scars

Transmission electron microscopy was used to evaluate the

morphology of the stratum corneum, the end stage of

epidermal differentiation. Only the two most extreme pheno-

types were selected for this purpose – normal skin and keloid

scars – both from the torso region. In healthy skin, the stra-

tum corneum showed deposition of several strata of approxi-

mately equal thickness in parallel alignment, with a clear

distinction between the stratum corneum and underlying

viable epidermal layers. However, the strata in keloid scars

had irregular, disorganized, poorly aligned contours compared

with normal skin, with a less pronounced interface between

the stratum corneum and viable epidermal layers underneath

(Fig. 3). These findings are consistent with the previously

described abnormal expression of the cornified envelope (CE)

precursor involucrin in keloid scars.

Discussion

In this study we have confirmed that epidermal abnormalities

are not limited to mature hypertrophic scars, but are also pre-

sent in mature keloid scars. We found that keloid scars have

greater epidermal thickness than normal skin and mature nor-

motrophic scars. This was not the result of increased

Table 3 Summary results of immunohistochemical stainings

Marker Function of marker Nskin Nscar Hscar P-Kscar Cs-Kscar

Epidermal (hyper)proliferation

Ki67 Nuclear protein expressed during
active phases of cell cycle

16�8 � 3�5 17�7 � 6�8 14�8 � 6�0 21�7 � 11�8 22�7 � 9�4

Keratin 6 Intermediate filament protein,
expressed in hyperproliferation

� � � (9/10) � (9/10) � (8/10)

Keratin 16 Intermediate filament protein,
expressed in hyperproliferation

� � � (8/10) � (8/10) � (9/10)

Keratin 17 Intermediate filament protein,
expressed in hyperproliferation

� � (9/10) � (8/10) � (8/10) � (9/10)

Epidermal differentiation
Keratin 10 Intermediate filament protein

expressed in keratinizing cells

SPB SPB SPB SPB SPB

Involucrin Scaffolding protein in cornified envelope,

expressed by differentiating keratinocytes

+ ++ (7/10);

+ (3/10)

+++ (4/10);

++ (3/10);
+ (3/10)

+++ (7/10);

++ (3/10)

+++ (9/10);

++ (1/10)

Loricrin Major cornified envelope protein,
expressed in granular keratinocytes

SG SG SG SG SG

Filaggrin Aggregates keratin intermediate
filaments in lower stratum corneum,

expressed as profilaggrin in granular
keratinocytes

SG SG SG SG SG

SPRR2 Cornified envelope protein expressed
in granular keratinocytes

SG SG SG SG SG

SKALP Cornified envelope protein, epithelial
proteinase inhibitor acting as substrate

for transglutaminases, expressed in
inflammation (absent from normal skin)

� � � � (9/10) � (8/10)

Summary of the immunohistochemical results for localization of keratinocyte differentiation, proliferation and activation markers in normal

skin (Nskin), normotrophic scar (Nscar), hypertrophic scar (Hscar), periphery of keloid scar (P-Kscar) and superficial centre of keloid scar

(Cs-Kscar). Ki67 is expressed as the mean � SEM. Numbers in brackets (x/y) denote the number of ‘x’ donors showing the indicated score,

out of the total number of ‘y’ donors included. For keratins 6, 16 and 17, the remaining donors showed weak intermittent staining. SPB,

suprabasal expression; SG, stratum granulosum expression; NA, not applicable; +, normal expression; ++, increased expression; +++, strongly

increased expression; �, absent. SPRR2, small proline-rich region protein 2; SKALP, skin-derived antileucoproteinase.
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proliferation. However, it could be associated with abnormal

early terminal differentiation (involucrin expression), which

may in turn affect stratum corneum formation.

One of our first considerations for the experimental set-up

of this study was the possible heterogeneity within keloid

scars. Clinicians have long since described the presence of an

actively growing periphery as opposed to a regressive central

region. However, the opposite has also been suggested, with

the central area within the keloid seen as the actively growing

and expanding region.24,25 In this study, we did not find any

obvious differences between the peripheral and central regions

of the keloid in the epidermal compartment. It would seem

that increased epidermal thickness and early involucrin expres-

sion are features of keloid scars in their entirety, rather than

specific qualities of a particular region within the keloids.

At the dermoepidermal interface we found that the depth

and frequency of epidermal rete ridge formation was signifi-

cantly reduced in all scar types compared with normal skin.

Others have reported both the absence26–30 and presence of

rete ridges,30,31 or even both3,11 in abnormal scars. Using our

method to assess rete ridge formation in a semiquantifiable

manner, our results are in line with those of Ehrlich et al.,28

who also found that rete ridges are absent from nor-

motrophic, hypertrophic and keloid scars. However, Moshref

and Mufti32 reported flattening of the epidermis in all hyper-

trophic scars, but in only one-third of keloids.

We found that a gradation in increasing epidermal

thickness correlated with the degree of severity of the

scar: epidermal-thickness keloid > hypertrophic scar > nor-

motrophic scar > normal skin. In the literature, the keloid epi-

dermis has been described as both appearing morphologically

normal1,2,26,33 and having increased thickness,14,34–38 while

some found a thicker epidermis in both abnormal scars,31,39,40

and yet others considered a thicker epidermis to be an incon-

sistent finding.28,41 However, to date we have not found a

publication comparing and measuring the epidermal thickness

of sufficiently matured scars (≥ 1 year old) of the entire scar

spectrum in a standardized, quantifiable manner. Hypertrophic

scars also showed a trend towards increased epidermal thick-

ness compared with normal skin and normotrophic scars, in

line with Andriessen et al.3,42 However, in our study only

keloid scars were found to have significantly increased epider-

mal thickness compared with normotrophic scars in addition

to normal skin.

Fig 3. General disorganization of stratum corneum in keloid scars. Transmission electron microscopy pictures of the stratum corneum in normal

skin and keloid scars are shown, with increasing magnifications (from left to right, with each row depicting a different donor: d1–d6). Scale

bar = 5 lm. The dermis (DER), epidermis (EPI), stratum granulosum (SG) and stratum corneum (SC) are indicated in the figures. Tissue samples

were not donor matched.
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Increased epidermal thickness was not associated with

increased proliferation. This was concluded from our

immunohistochemical stainings performed to assess activation

and hyperproliferation markers (keratins 6, 16 and 17) and

proliferation (Ki67). This is in contrast with reports from

others citing the presence of epidermal hyperproliferation in

keloids and/or hypertrophic scars.37,43,44 However, with the

exception of Ong et al.37 it is unclear whether the scars

included in these studies had sufficiently matured. Notably, in

hypertrophic scars, early increased and abnormal Ki67 and

keratin 16 expression also normalizes after 12 months.3 We

do not consider that early increased epidermal proliferation in

young scars could be responsible for the observed epidermal

thickening in our mature scars, as epidermal turnover takes

place in approximately 4–6 weeks and our scars were older

than 1 year. In addition, our immunohistochemical results are

further corroborated by our in vitro keratinocyte proliferation

assay, where indeed cultured keloid keratinocytes showed no

difference in proliferation compared with keratinocytes

derived from normal scars. Taken together these results indi-

cate that mature abnormal scars do not show increased prolif-

eration of the epidermis.

Having determined that increased epidermal thickness was

not related to increased proliferation, we next determined

whether abnormal differentiation could be involved. Interest-

ingly, from a panel of epidermal differentiation markers, only

involucrin showed abnormal expression. A significantly

enhanced expression of this early terminal differentiation mar-

ker was observed in most keloid scars and approximately half of

the hypertrophic scars. Notably, if the periphery and the central

region of the keloid were considered together, increased involu-

crin expression was always present in at least one of the two

regions. Increased involucrin expression in the context of a

thickened epidermal cell layer has previously been reported for

skin fibrosis induced by radiation.45 While increased epidermal

thickness in our study was not related to hyperproliferation, it

was possibly related to abnormal terminal differentiation,

specifically at the level of involucrin expression.

At the ultrastructural level, we found that the abnormal epi-

dermal differentiation was in fact associated with disorganiza-

tion of the stratum corneum in keloid scars. Deposition of

involucrin protein on the inner side of the keratinocyte cell

membrane is an important first scaffolding step, with other CE

proteins subsequently added. Ultimately, the process of ker-

atinocyte differentiation results in the production of corneo-

cytes, flattened dead cells comprising mostly keratin filaments

encased in an impermeable CE. Together with intercellular

lipids, they make up the ‘bricks and mortar’ of the stratum

corneum barrier.46 As such, it is not unreasonable to assume

that the abnormal differentiation may have affected the CE,

the end result of the differentiation process. Involucrin is also

known to be expressed prematurely in psoriasis and is thought

to be related to the observed ultrastructural immature CE for-

mation.47,48 Psoriatic involucrin-expressing CE developed

already in lower spinous layers and remained thin instead of

thickening, and showed reduced involucrin expression as in

healthy skin.46,49 For this reason, it seems likely that the pre-

cocious involucrin expression in keloids also correlates with

changes in CE formation and, consequently, in stratum cor-

neum formation.

There is also evidence suggesting that the stratum corneum

is not only structurally but also functionally compromised.

The stratum corneum of both keloids and hypertrophic scars

showed increased transepidermal water loss (TEWL) and/or

water-holding capacity (high-frequency conductance) com-

pared with atrophic scars and corresponding normal skin, as

well as a faster turnover rate of the stratum corneum.50,51

Interestingly, the abnormal TEWL found in keloids resembled

that of young scars, suggesting that keloid scars do not pro-

gress beyond the early stages of wound healing and remain in

this state for years.51 This is particularly interesting given that

Kunii et al.52 not only found numerous immature and less

hydrophobic CEs in the corneocytes derived from superficial

stratum corneum layers in young scars, but also saw that bar-

rier dysfunction could be attributed to these defective corneo-

cytes rather than the intercellular lipid abnormalities. Thus,

the abnormal epidermal differentiation characterizing keloid

scars may very well lead to defective CEs, with subsequent

stratum corneum barrier dysfunction. Decreased hydration

levels, in turn, have been known to result in increased proin-

flammatory gene expression in epidermal keratinocytes.53

In summary, this study lends further support to the hypoth-

esis that keratinocytes are involved in abnormal scar forma-

tion. Yan et al.54 showed that keloid epidermal cells

undergoing an epidermal–mesenchymal transition may be one

of the cell types responsible for generating keloid fibroblasts.

Furthermore, the possible involvement of the epidermis in

hypertrophic scar formation has previously been implied and

demonstrated via immunohistochemical studies by several

authors.10,44 In our study, hypertrophic scars showed a mostly

mixed phenotype that was intermediate between nor-

motrophic and keloid scars, while the epidermal abnormalities

in keloid scars were more pronounced and more frequent.

Our findings thus do not yet allow for a clear distinction

between the two abnormal scar types, but do suggest they are

not simply one and the same. Together with our current find-

ings of increased epidermal thickness with abnormal terminal

differentiation, this study strongly supports the possibility that

the epidermal abnormalities are associated with mature keloid

scar formation and, as such, should no longer be overlooked

when studying the underlying pathogenesis.
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