836 research outputs found

    New supersymmetric higher-derivative couplings: Full N=2 superspace does not count!

    Get PDF
    An extended class of N=2 locally supersymmetric invariants with higher-derivative couplings based on full superspace integrals, is constructed. These invariants may depend on unrestricted chiral supermultiplets, on vector supermultiplets and on the Weyl supermultiplet. Supersymmetry is realized off-shell. A non-renormalization theorem is proven according to which none of these invariants can contribute to the entropy and electric charges of BPS black holes. Some of these invariants may be relevant for topological string deformations.Comment: 24 pages, v2: version published in JHEP, one reference added and typos corrected, v3: reference adde

    What Underlies Political Polarization? A Manifesto for Computational Political Psychology

    Get PDF
    Polarization is one of the biggest societal challenges of our time, yet its drivers are poorly understood. Here we propose a novel approach - computational political psychology - which uses behavioral tasks in combination with formal computational models to identify candidate cognitive processes underpinning susceptibility to polarized beliefs about political and societal issues

    Current position of 5HT3 antagonists and the additional value of NK1 antagonists; a new class of antiemetics

    Get PDF
    The advent of the 5HT3 receptor antagonists (5HT3 antagonists) in the 1990s and the combination with dexamethasone has resulted in acute emesis protection in 70% of patients receiving highly emetogenic chemotherapy. Despite complete protection in the acute phase, however, 40% of patients as yet have symptoms in the delayed phase, 5HT3 antagonists and dexamethasone are only modestly effective in this delayed phase. Moreover, the antiemetic protection over repeated cycles is not sustained. Neurokinine 1 receptor antagonists (NK1 antagonists) belong to a new class of antiemetic agents that specifically target the NK1 receptor, which is involved in both the acute and, particularly, the delayed phase of emesis. Clinical studies have demonstrated that the addition of NK1 antagonists to dual therapy with a 5HT3 antagonist plus dexamethasone improves the acute emesis protection by a further 10-15%. In the delayed phase, the proportion of patients remaining free of emesis increases by even 20-30%. Since the effectiveness of this triplet combination was found to be sustained over six cycles of chemotherapy, the chance for an individual patient to remain completely protected during both the acute and the delayed phase over six chemotherapy cycles is nearly doubled

    Reply: Granisetron vs ondansetron: is it a question of duration of 5-HT3 receptor blockade?

    Get PDF
    British Journal of Cancer (2002) 86, 1664–1664. DOI: 10.1038/sj/bjc/6600314 www.bjcancer.co

    Cross Helicity Reversals in Magnetic Switchbacks

    Get PDF
    International audienceWe consider 2D joint distributions of normalized residual energy, sigma(r)(s, t), and cross helicity, sigma(c)(s, t), during one day of Parker Solar Probe's (PSP's) first encounter as a function of wavelet scale s. The broad features of the distributions are similar to previous observations made by Helios in slow solar wind, namely well-correlated and fairly Alfvenic wind, except for a population with negative cross helicity that is seen at shorter wavelet scales. We show that this population is due to the presence of magnetic switchbacks, or brief periods where the magnetic field polarity reverses. Such switchbacks have been observed before, both in Helios data and in Ulysses data in the polar solar wind. Their abundance and short timescales as seen by PSP in its first encounter is a new observation, and their precise origin is still unknown. By analyzing these MHD invariants as a function of the wavelet scale, we show that magnetohydrodynamic (MHD) waves do indeed follow the local mean magnetic field through switchbacks, with a net Elsasser flux propagating inward during the field reversal and that they, therefore, must be local kinks in the magnetic field and not due to small regions of opposite polarity on the surface of the Sun. Such observations are important to keep in mind as computing cross helicity without taking into account the effect of switchbacks may result in spurious underestimation of sigma(c) as PSP gets closer to the Sun in later orbits

    Retrograde semaphorin-plexin signalling drives homeostatic synaptic plasticity.

    Get PDF
    Homeostatic signalling systems ensure stable but flexible neural activity and animal behaviour. Presynaptic homeostatic plasticity is a conserved form of neuronal homeostatic signalling that is observed in organisms ranging from Drosophila to human. Defining the underlying molecular mechanisms of neuronal homeostatic signalling will be essential in order to establish clear connections to the causes and progression of neurological disease. During neural development, semaphorin-plexin signalling instructs axon guidance and neuronal morphogenesis. However, semaphorins and plexins are also expressed in the adult brain. Here we show that semaphorin 2b (Sema2b) is a target-derived signal that acts upon presynaptic plexin B (PlexB) receptors to mediate the retrograde, homeostatic control of presynaptic neurotransmitter release at the neuromuscular junction in Drosophila. Further, we show that Sema2b-PlexB signalling regulates presynaptic homeostatic plasticity through the cytoplasmic protein Mical and the oxoreductase-dependent control of presynaptic actin. We propose that semaphorin-plexin signalling is an essential platform for the stabilization of synaptic transmission throughout the developing and mature nervous system. These findings may be relevant to the aetiology and treatment of diverse neurological and psychiatric diseases that are characterized by altered or inappropriate neural function and behaviour

    Switchbacks in the Near-Sun Magnetic Field: Long Memory and Impact on the Turbulence Cascade

    Get PDF
    International audienceOne of the most striking observations made by Parker Solar Probe during its first solar encounter is the omnipresence of rapid polarity reversals in a magnetic field that is otherwise mostly radial. These so-called switchbacks strongly affect the dynamics of the magnetic field. We concentrate here on their macroscopic properties. First, we find that these structures are self-similar, and have neither a characteristic magnitude, nor a characteristic duration. Their waiting time statistics show evidence of aggregation. The associated long memory resides in their occurrence rate, and is not inherent to the background fluctuations. Interestingly, the spectral properties of inertial range turbulence differ inside and outside of switchback structures; in the latter the 1/f range extends to higher frequencies. These results suggest that outside of these structures we are in the presence of lower-amplitude fluctuations with a shorter turbulent inertial range. We conjecture that these correspond to a pristine solar wind

    Renormalization group approach to matrix models via noncommutative space

    Full text link
    We develop a new renormalization group approach to the large-N limit of matrix models. It has been proposed that a procedure, in which a matrix model of size (N-1) \times (N-1) is obtained by integrating out one row and column of an N \times N matrix model, can be regarded as a renormalization group and that its fixed point reveals critical behavior in the large-N limit. We instead utilize the fuzzy sphere structure based on which we construct a new map (renormalization group) from N \times N matrix model to that of rank N-1. Our renormalization group has great advantage of being a nice analog of the standard renormalization group in field theory. It is naturally endowed with the concept of high/low energy, and consequently it is in a sense local and admits derivative expansions in the space of matrices. In construction we also find that our renormalization in general generates multi-trace operators, and that nonplanar diagrams yield a nonlocal operation on a matrix, whose action is to transport the matrix to the antipode on the sphere. Furthermore the noncommutativity of the fuzzy sphere is renormalized in our formalism. We then analyze our renormalization group equation, and Gaussian and nontrivial fixed points are found. We further clarify how to read off scaling dimensions from our renormalization group equation. Finally the critical exponent of the model of two-dimensional gravity based on our formalism is examined.Comment: 1+42 pages, 4 figure

    Semaphorin 6A Improves Functional Recovery in Conjunction with Motor Training after Cerebral Ischemia

    Get PDF
    Background: We have previously identified Semaphorin 6a (Sema6A) as an upregulated gene product in a gene expression screen in cortical ischemia [1]. Semaphorin 6a was regulated during the recovery phase following ischemia in the cortex. Semaphorin 6a is a member of the superfamily of semaphorins involved in axon guidance and other functions. We hypothesized that the upregulation indicates a crucial role of this molecule in post-stroke rewiring of the brain. Here we have tested this hypothesis by overexpressing semaphorin 6a in the cortex by microinjection of a modified AAV2-virus. A circumscribed cortical infarct was induced, and the recovery of rats monitored for up to 4 weeks using a well-established test battery (accelerated rotarod training paradigm, cylinder test, adhesive tape removal). We observed a significant improvement in post-ischemic recovery of animals injected with the semaphorin 6a virus versus animals treated with a control virus. We conclude that semaphorin 6a overexpressed in the cortex enhances recovery after cerebral ischemia
    • …
    corecore