580 research outputs found

    Production of microbial transglutaminase on media made from sugar cane molasses and glycerol

    Get PDF
    Transglutaminase is an enzyme that catalyses an acyl transfer reaction between γ-carboxamide groups of glutaminyl residues and lysine residues in proteins. Due to this property, this enzyme is used for enhancing textural properties of protein-rich food. The transglutaminase used as food additive is obtained by microorganisms, mainly by Streptoverticillium ladakanum. On the other hand, sugar cane molasses is a viscous liquid rich in noncrystallized carbohydrates (saccharose, glucose and fructose). In this work, the feasibility of using sugar cane molasses as a carbon source for the production of microbial transglutaminase by Streptoverticillium ladakanum NRRL 3191 has been studied. Carbon sources including sugar cane molasses (60 g of total sugars per L), glycerol (60 g/L) and their mixture in a ratio of 1:1 (30 g/L of each) were evaluated. Time course of microbial growth, transglutaminase activity and carbon source consumption were determined every 24 h during 120 h of fermentations at three agitation speeds (200, 300 or 400 rpm). The results showed that with the increase in agitation speed, the biomass concentration increased up to 8.39 g/L in the medium containing sugar cane molasses alone or the mixture of molasses and glycerol. The highest transglutaminase activity was obtained at 400 rpm in the medium containing a mixture of molasses and glycerol, reaching 0.460 U/mL, while in the medium containing sugar cane molasses alone, the activity was 0.240 U/mL, and using glycerol alone it was 0.250 U/mL. These results show that sugar cane molasses is a suitable medium for transglutaminase production when it is combined with glycerolA grant from FOMIX CONACYT – Gobierno de Tamaulipas (Ref. 2004/1055) to author Portilla-Rivera is gratefully acknowledged. The authors are grateful to Ministerio de Educación y Ciencia (Spain) for the financial support of this work (Project: AGL2006-08250/ALI)S

    Yttria-stabilized zirconia/SrTiO_(3) oxide heteroepitaxial interface with symmetry discontinuity

    Get PDF
    We show that yttria-stabilized zirconia (YSZ) films deposited on structurally dissimilar SrTiO_(3)(110) substrates exhibit two-dimensional layer-by-layer growth. We observed that, up to a thickness of about 15 nm, the square (001) basal plane of the cubic YSZ grows epitaxially on the rectangular (110) crystallographic plane of SrTiO3 substrates, with [110]YSZ(001)//[001]SrTiO_(3)(110) epitaxial relationship. Thus, the heterointerface presents symmetry discontinuity between the YSZ(001) film and the lower surface symmetry SrTiO_(3)(110) substrate. Beyond this specific case, we envisage similar approaches to develop other innovative oxide interfaces showing similar crystal symmetry discontinuities

    XANES and EXAFS study of the local order in nanocrystalline yttria-stabilized zirconia

    Get PDF
    The local order around Zr and Y atoms of nanocrystalline yttria-stabilized zirconia (YSZ) powders with different grain sizes has been investigated by x-ray absorption spectroscopies. The samples were prepared by means of mechanical alloying with or without subsequent sintering treatment and also by milling commercial YSZ. Our study is motivated by the interest in the electrical properties of grain boundaries and the controversy about the level of disorder in the intergrain regions in nanocrystalline YSZ. The x-ray absorption near edge structure (XANES) analysis indicates that the local order of all the sintered samples is independent of the grain size. This is confirmed by the analysis of the extended x-ray absorption fine structure, which points out also that, in contrast to that found in sintered samples, the local order around the cation in the samples milled without further sintering treatment extends only to the first coordination shell. Finally, the results of ab initio Zr K-edge XANES calculations lead us to conclude that the observed changes of the shape of the white line are not related to a phase transformation but reflects the short-range order present in the as-milled samples

    Examination of WRF-ARW experiments using different planetary boundary layer parameterizations to study the rapid intensification and trajectory of Hurricane Otto 2016

    Get PDF
    Hurricane Otto (2016) was characterised by remarkable meteorological features of relevance for the scientific community and society. Scientifically, among the most important attributes of Otto is that it underwent a rapid intensification (RI) process. For society, this cyclone severely impacted Costa Rica and Nicaragua, leaving enormous economic losses and many fatalities. In this study, a set of three numerical simulations are performed to examine the skill of model estimations in reproducing RI and trajectory of Hurricane Otto by comparing the results of a global model to a regional model using three different planetary boundary layer parameterizations (PBL). The objective is to set the basis for future studies that analyse the physical reasons why a particular simulation (associated with a certain model setup) performs better than others in terms of reproducing RI and trajectory. We use the regional model Weather Research and Forecasting—Advanced Research WRF (WRF-ARW) with boundary and initial conditions provided by the Global Forecast System (GFS) analysis (horizontal resolution of 0.5 degrees). The PBL used are the Medium Range Forecast, the Mellor-Yamada-Janjic (MYJ), and the Yonsei University (YSU) parameterizations. The regional model is run in three static domains with horizontal grid spacing of 27, 9 and 3 km, the latter covering the spacial extent of Otto during the simulation period. WRF-ARW results improve the GFS forecast, in almost every aspect evaluated in this study, particularly, the simulated trajectories in WRF-ARW show a better representation of the cyclone path and movement compared to GFS. Even though the MYJ experiment was the only one that exhibited an abrupt 24-h change in the storm’s surface wind, close to the 25-knot threshold, the YSU scheme presented the fastest intensification, closest to reality. View Full-TextUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigaciones Geofísicas (CIGEFI)UCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigación en Ciencias del Mar y Limnología (CIMAR)UCR::Vicerrectoría de Docencia::Ciencias Básicas::Facultad de Ciencias::Escuela de Físic

    Ionic conductivity of nanocrystalline yttria-stabilized zirconia: grain boundary and size effects

    Get PDF
    We report on the effect of grain size on the ionic conductivity of yttria-stabilized zirconia samples synthesized by ball milling. Complex impedance measurements, as a function of temperature and frequency are performed on 10 mol % yttria-stabilized zirconia nanocrystalline samples with grain sizes ranging from 900 to 17 nm. Bulk ionic conductivity decreases dramatically for grain sizes below 100 nm, although its activation energy is essentially independent of grain size. The results are interpreted in terms of a space-charge layer resulting from segregation of mobile oxygen vacancies to the grain-boundary core. The thickness of this space-charge layer formed at the grain boundaries is on the order of 1 nm for large micron-sized grains but extends up to 7 nm when decreasing the grain size down to 17 nm. This gives rise to oxygen vacancies depletion over a large volume fraction of the grain and consequently to a significant decrease in oxide-ion conductivity

    IFE Plant Technology Overview and contribution to HiPER proposal

    Full text link
    HiPER is the European Project for Laser Fusion that has been able to join 26 institutions and signed under formal government agreement by 6 countries inside the ESFRI Program of the European Union (EU). The project is already extended by EU for two years more (until 2013) after its first preparatory phase from 2008. A large work has been developed in different areas to arrive to a design of repetitive operation of Laser Fusion Reactor, and decisions are envisioned in the next phase of Technology Development or Risk Reduction for Engineering or Power Plant facilities (or both). Chamber design has been very much completed for Engineering phase and starting of preliminary options for Reactor Power Plant have been established and review here

    Artificial intelligence assisted Mid-infrared laser spectroscopy in situ detection of petroleum in soils

    Get PDF
    A simple, remote-sensed method of detection of traces of petroleum in soil combining artificial intelligence (AI) with mid-infrared (MIR) laser spectroscopy is presented. A portable MIR quantum cascade laser (QCL) was used as an excitation source, making the technique amenable to field applications. The MIR spectral region is more informative and useful than the near IR region for the detection of pollutants in soil. Remote sensing, coupled with a support vector machine (SVM) algorithm, was used to accurately identify the presence/absence of traces of petroleum in soil mixtures. Chemometrics tools such as principal component analysis (PCA), partial least square-discriminant analysis (PLS-DA), and SVM demonstrated the e ectiveness of rapidly di erentiating between di erent soil types and detecting the presence of petroleum traces in di erent soil matrices such as sea sand, red soil, and brown soil. Comparisons between results of PLS-DA and SVM were based on sensitivity, selectivity, and areas under receiver-operator curves (ROC). An innovative statistical analysis method of calculating limits of detection (LOD) and limits of decision (LD) from fits of the probability of detection was developed. Results for QCL/PLS-DA models achieved LOD and LD of 0.2% and 0.01% for petroleum/soil, respectively. The superior performance of QCL/SVM models improved these values to 0.04% and 0.003%, respectively, providing better identification probability of soils contaminated with petroleum

    SEOM clinical guideline for the diagnosis and treatment of gastric cancer (GC) and gastroesophageal junction adenocarcinoma (GEJA) (2019)

    Get PDF
    Gastric cancer (GC) is the fifth most common cancer worldwide with a varied geographic distribution and an aggressive behavior. In Spain, it represents the sixth cause of cancer death. In Western countries, the incidence is decreasing slightly, with an increase in gastroesophageal junction adenocarcinoma (GEJA), a different entity that we separate specifically in the guideline. Molecular biology advances have been done recently, but do not yet lead to the choice in treatment approach except in advanced disease with overexpression of HER2. Endoscopic resection in very early stage, perioperative chemotherapy in locally advanced tumors and preliminary immune therapy resulting in advanced disease are the main treatment innovations in the GC/GEJA treatment. We describe the different evidences and recommendations following the statements of the American College of Physicians

    Excavaciones en el conjunto megalítico de la Peña Oviedo (Camaleño, Cantabria)

    Get PDF
    La excavación del conjunto megalítico de la Peña Oviedo, pretende ser el inicio de un estudio más amplio que aborde de manera global el fenómeno megalítico en las cue.ncas altas de los ríos Deva y Nansa. El total desconocimiento que se tenía hasta esta década, no ya del fenómeno megalítico, sino incluso de su existencia en estos valles montañosos del Occidente de Cantabria hace necesario un estudio que ponga de manifiesto sus características y las relaciones con las áreas vecinas.The excavation of the megalithic complex of the Peña Oviedo, pretends to be the beginning of a larger study that approaches the megalithic phenomenon in the global River basins of the Deva and Nansa rivers. The total lack of knowledge of the megalithic phenomenon, but not even of its existence in these mountain valleys of western Cantabria, requires a study that reveals its characteristics and relations with neighboring areas
    corecore