2,784 research outputs found

    Defective Production of Mitochondrial Ribosomes in the Poky Mutant of Neurospora crassa

    Full text link

    Puromycin Sensitivity of Ribosomal Label after Incorporation of 14C-Labelled Amino Acids into Isolated Mitochondria from Neurospora crassa

    Get PDF
    Radioactive amino acids were incorporated into isolated mitochondria from Neurospora crassa. Then the mitochondrial ribosomes were isolated and submitted to density gradient centrifugation. A preferential labelling of polysomes was observed. However, when the mitochondrial suspension was treated with puromycin after amino acid incorporation, no radioactivity could be detected in either the monosomes or the polysomes. The conclusion is drawn that isolated mitochondria under these conditions do not incorporate significant amounts of amino acids into proteins of their ribosomes

    252 F-SPONDIN MEDIATES CATABOLIC EFFECTS ON ARTICULAR CHONDROCYTES VIA ITS THROMBOSPONDIN REPEAT (TSR) DOMAIN

    Get PDF

    Inhibition in multiclass classification

    Get PDF
    The role of inhibition is investigated in a multiclass support vector machine formalism inspired by the brain structure of insects. The so-called mushroom bodies have a set of output neurons, or classification functions, that compete with each other to encode a particular input. Strongly active output neurons depress or inhibit the remaining outputs without knowing which is correct or incorrect. Accordingly, we propose to use a classification function that embodies unselective inhibition and train it in the large margin classifier framework. Inhibition leads to more robust classifiers in the sense that they perform better on larger areas of appropriate hyperparameters when assessed with leave-one-out strategies. We also show that the classifier with inhibition is a tight bound to probabilistic exponential models and is Bayes consistent for 3-class problems. These properties make this approach useful for data sets with a limited number of labeled examples. For larger data sets, there is no significant comparative advantage to other multiclass SVM approaches

    AN ENZYMATIC FUNCTION ASSOCIATED WITH TRANSFORMATION OF FIBROBLASTS BY ONCOGENIC VIRUSES : I. CHICK EMBRYO FIBROBLAST CULTURES TRANSFORMED BY AVIAN RNA TUMOR VIRUSES

    Get PDF
    Chick embryo fibroblast cultures develop fibrinolytic activity after transformation by Rous sarcoma virus (RSV). This fibrinolytic activity is not present in normal cultures, and it does not appear after infection with either nontransforming strains of avian leukosis viruses or cytocidal RNA and DNA viruses. In cultures infected with a temperature sensitive mutant of RSV the onset of fibrinolysis appears after exposure to permissive temperatures and precedes by a short interval the appearance of morphological evidence of transformation. See PDF for Structure The rate of fibrinolysis in transformed cultures depends on the nature of the serum that is present in the growth medium: some sera (e.g., monkey or chicken serum) promote high enzymatic activity, while others (calf, fetal bovine) do not. Some sera contain inhibitors of the fibrinolysin. Based on the effect of a small number of known inhibitors, at least one step of the fibrinolytic process shows specificity resembling that of trypsin. The sera of sarcoma-bearing chickens contain an inhibitor of the fibrinolysin, whereas normal chicken sera do not. For general discussion, conclusions, and summary see the accompanying paper, part II, (J. Exp. Med. 137:112)

    Inhibition in multiclass classification

    Get PDF
    The role of inhibition is investigated in a multiclass support vector machine formalism inspired by the brain structure of insects. The so-called mushroom bodies have a set of output neurons, or classification functions, that compete with each other to encode a particular input. Strongly active output neurons depress or inhibit the remaining outputs without knowing which is correct or incorrect. Accordingly, we propose to use a classification function that embodies unselective inhibition and train it in the large margin classifier framework. Inhibition leads to more robust classifiers in the sense that they perform better on larger areas of appropriate hyperparameters when assessed with leave-one-out strategies. We also show that the classifier with inhibition is a tight bound to probabilistic exponential models and is Bayes consistent for 3-class problems. These properties make this approach useful for data sets with a limited number of labeled examples. For larger data sets, there is no significant comparative advantage to other multiclass SVM approaches

    Premise Selection for Mathematics by Corpus Analysis and Kernel Methods

    Get PDF
    Smart premise selection is essential when using automated reasoning as a tool for large-theory formal proof development. A good method for premise selection in complex mathematical libraries is the application of machine learning to large corpora of proofs. This work develops learning-based premise selection in two ways. First, a newly available minimal dependency analysis of existing high-level formal mathematical proofs is used to build a large knowledge base of proof dependencies, providing precise data for ATP-based re-verification and for training premise selection algorithms. Second, a new machine learning algorithm for premise selection based on kernel methods is proposed and implemented. To evaluate the impact of both techniques, a benchmark consisting of 2078 large-theory mathematical problems is constructed,extending the older MPTP Challenge benchmark. The combined effect of the techniques results in a 50% improvement on the benchmark over the Vampire/SInE state-of-the-art system for automated reasoning in large theories.Comment: 26 page

    The Healthy Human Blood Microbiome: Fact or Fiction?

    Get PDF
    The blood that flows perpetually through our veins and arteries performs numerous functions essential to our survival. Besides distributing oxygen, this vast circulatory system facilitates nutrient transport, deters infection and dispenses heat throughout our bodies. Since human blood has traditionally been considered to be an entirely sterile environment, comprising only blood-cells, platelets and plasma, the detection of microbes in blood was consistently interpreted as an indication of infection. However, although a contentious concept, evidence for the existence of a healthy human blood-microbiome is steadily accumulating. While the origins, identities and functions of these unanticipated micro-organisms remain to be elucidated, information on blood-borne microbial phylogeny is gradually increasing. Given recent advances in microbial-hematology, we review current literature concerning the composition and origin of the human blood-microbiome, focusing on bacteria and their role in the configuration of both the diseased and healthy human blood-microbiomes. Specifically, we explore the ways in which dysbiosis in the supposedly innocuous blood-borne bacterial microbiome may stimulate pathogenesis. In addition to exploring the relationship between blood-borne bacteria and the development of complex disorders, we also address the matter of contamination, citing the influence of contaminants on the interpretation of blood-derived microbial datasets and urging the routine analysis of laboratory controls to ascertain the taxonomic and metabolic characteristics of environmentally-derived contaminant-taxa
    corecore