68 research outputs found
Insights into the function of silver as an oxidation catalyst by ab initio, atomistic thermodynamics
To help understand the high activity of silver as an oxidation catalyst,
e.g., for the oxidation of ethylene to epoxide and the dehydrogenation of
methanol to formaldehyde, the interaction and stability of oxygen species at
the Ag(111) surface has been studied for a wide range of coverages. Through
calculation of the free energy, as obtained from density-functional theory and
taking into account the temperature and pressure via the oxygen chemical
potential, we obtain the phase diagram of O/Ag(111). Our results reveal that a
thin surface-oxide structure is most stable for the temperature and pressure
range of ethylene epoxidation and we propose it (and possibly other similar
structures) contains the species actuating the catalysis. For higher
temperatures, low coverages of chemisorbed oxygen are most stable, which could
also play a role in oxidation reactions. For temperatures greater than about
775 K there are no stable oxygen species, except for the possibility of O atoms
adsorbed at under-coordinated surface sites Our calculations rule out thicker
oxide-like structures, as well as bulk dissolved oxygen and molecular
ozone-like species, as playing a role in the oxidation reactions.Comment: 15 pages including 9 figures, Related publications can be found at
http://www.fhi-berlin.mpg.de/th/paper.htm
Mouse Chromosome 11
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46996/1/335_2004_Article_BF00648429.pd
Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm
We present the first results of the Fermilab Muon g-2 Experiment for the
positive muon magnetic anomaly . The anomaly is
determined from the precision measurements of two angular frequencies.
Intensity variation of high-energy positrons from muon decays directly encodes
the difference frequency between the spin-precession and cyclotron
frequencies for polarized muons in a magnetic storage ring. The storage ring
magnetic field is measured using nuclear magnetic resonance probes calibrated
in terms of the equivalent proton spin precession frequency
in a spherical water sample at 34.7C. The
ratio , together with known fundamental
constants, determines
(0.46\,ppm). The result is 3.3 standard deviations greater than the standard
model prediction and is in excellent agreement with the previous Brookhaven
National Laboratory (BNL) E821 measurement. After combination with previous
measurements of both and , the new experimental average of
(0.35\,ppm) increases the
tension between experiment and theory to 4.2 standard deviationsComment: 10 pages; 4 figure
- …