320 research outputs found

    Economics of Water Quality Protection from Nonpoint Sources: Theory and Practice

    Get PDF
    Water quality is a major environmental issue. Pollution from nonpoint sources is the single largest remaining source of water quality impairments in the United States. Agriculture is a major source of several nonpoint-source pollutants, including nutrients, sediment, pesticides, and salts. Agricultural nonpoint pollution reduction policies can be designed to induce producers to change their production practices in ways that improve the environmental and related economic consequences of production. The information necessary to design economically efficient pollution control policies is almost always lacking. Instead, policies can be designed to achieve specific environmental or other similarly related goals at least cost, given transaction costs and any other political, legal, or informational constraints that may exist. This report outlines the economic characteristics of five instruments that can be used to reduce agricultural nonpoint source pollution (economic incentives, standards, education, liability, and research) and discusses empirical research related to the use of these instruments.water quality, nonpoint-source pollution, economic incentives, standards, education, liability, research, Environmental Economics and Policy,

    A REGIONAL MODELING STRUCTURE FOR ASSESSING MANURE MANAGEMENT POLICIES: APPLICATION TO THE CHESAPEAKE BAY WATERSHED

    Get PDF
    A modeling framework addresses manure management policies within the Chesapeake Bay watershed. Policy focus is on manure-land application at agronomic rates, as proposed under the EPA/USDA Unified Strategy. Manure-nutrient flows are assessed subject to assimilative capacity of farmland. National data bases and GIS coverages facilitate model transferability to other watersheds.manure management, confined livestock operations, regional optimization, Chesapeake Bay, Environmental Economics and Policy, Livestock Production/Industries,

    MODELING MULTI-FARM SPATIAL INTERDEPENDENCE USING NATIONAL DATA COVERAGES: A REGIONAL APPLICATION TO MANURE MANAGEMENT

    Get PDF
    A regional modeling framework using national data series is developed to estimate the net cost of land applying manure under new federal guidelines for manure management. The model, applied to the Chesapeake Bay watershed, integrates GIS spatial data within an optimization model to generate manure hauling distances and costs.Livestock Production/Industries,

    MANURE MANAGEMENT FOR WATER QUALITY COSTS TO ANIMAL FEEDING OPERATIONS OF APPLYING MANURE NUTRIENTS TO LAND

    Get PDF
    Nutrients from livestock and poultry manure are key sources of water pollution. Ever-growing numbers of animals per farm and per acre have increased the risk of water pollution. New Clean Water Act regulations compel the largest confined animal producers to meet nutrient application standards when applying manure to the land, and USDA encourages all animal feeding operations to do the same. The additional costs for managing manure (such as hauling manure off the farm) have implications for feedgrain producers and consumers as well. This report's farm-level analysis examines on-farm technical choice and producer costs across major U.S. production areas for hauling manure to the minimum amount of land needed to assimilate manure nutrients. A regional analysis then focuses on off-farm competition for land to spread surplus manure, using the Chesapeake Bay region as a case study. Finally, a sectorwide analysis addresses potential long-term structural adjustments at the national level and ultimate costs to consumers and producers.manure management costs, price and quantity adjustments, water quality, animal waste, manure nutrients, excess nutrients, confined animals, CAFO, manure nitrogen, manure phosphorus, manure use, assimilative capacity, nutrient management plan, Environmental Economics and Policy, Livestock Production/Industries,

    Arsenic: A Roadblock to Potential Animal Waste Management Solutions

    Get PDF
    The localization and intensification of the poultry industry over the past 50 years have incidentally created a largely ignored environmental management crisis. As a result of these changes in poultry production, concentrated animal feeding operations (CAFOs) produce far more waste than can be managed by land disposal within the regions where it is produced. As a result, alternative waste management practices are currently being implemented, including incineration and pelletization of waste. However, organic arsenicals used in poultry feed are converted to inorganic arsenicals in poultry waste, limiting the feasibility of waste management alternatives. The presence of inorganic arsenic in incinerator ash and pelletized waste sold as fertilizer creates opportunities for population exposures that did not previously exist. The removal of arsenic from animal feed is a critical step toward safe poultry waste management

    Funneling Light Through a Subwavelength Aperture with Epsilon-Near-Zero Materials

    Full text link
    Integration of the next generation of photonic structures with electronic and optical on-chip components requires the development of effective methods for confining and controlling light in subwavelength volumes. Several techniques enabling light coupling to sub-wavelength objects have recently been proposed, including grating-, and composite-based solutions. However, experi-mental realization of these couplers involves complex fabrication with \sim 10nm resolution in three dimensions. One promising alternative to complex coupling structures involves materials with vanishingly small dielectric permittivity, also known as epsilon-near-zero (ENZ) materials. In contrast to the previously referenced approaches, a single at layer of ENZ-material is expected to provide effcient coupling between free-space radiation and sub-wavelength guiding structures. Here we report the first direct observation of bulk-ENZ-enhanced transmission through a subwavelength slit, accompanied by a theoretical study of this phenomenon. Our study opens the door to multiple practical applications of ENZ materials and ENZ-based photonic systems

    Genome-Wide Association Study of Human Immunodeficiency Virus (HIV)-1 Coreceptor Usage in Treatment-Naive Patients from An AIDS Clinical Trials Group Study

    Get PDF
    OBJECTIVES: We conducted a genome-wide association study to explore whether common host genetic variants (>5% frequency) were associated with presence of virus able to use CXCR4 for entry. METHODS: Phenotypic determination of human immunodeficiency virus (HIV)-1 coreceptor usage was performed on pretreatment plasma HIV-1 samples from treatment-naive participants in AIDS Clinical Trials Group A5095, a study of initial antiretroviral regimens. Associations between genome-wide single-nucleotide polymorphisms (SNPs), CCR5 Δ32 genotype, and human leukocyte antigen (HLA) class I alleles and viral coreceptor usage were explored. RESULTS: Viral phenotypes were obtained from 593 patients with available genome-wide SNP data. Forty-four percent of subjects had virus capable of using CXCR4 for entry as determined by phenotyping. Overall, no associations, including those between polymorphisms in genes encoding viral coreceptors and their promoter regions or in HLA genes previously associated with HIV-1 disease progression, passed the statistical threshold for genome-wide significance (P < 5.0 × 10(-8)) in any comparison. However, the presence of viruses able to use CXCR4 for entry was marginally associated with the CCR5 Δ32 genotype in the nongenome-wide analysis. CONCLUSIONS: No human genetic variants were significantly associated with virus able to use CXCR4 for entry at the genome-wide level. Although the sample size had limited power to definitively exclude genetic associations, these results suggest that host genetic factors, including those that influence coreceptor expression or the immune pressures leading to viral envelope diversity, are either rare or have only modest effects in determining HIV-1 coreceptor usage

    Methylphenidate Analogues as a New Class of Potential Disease-Modifying Agents for Parkinson’s Disease: Evidence from Cell Models and Alpha-Synuclein Transgenic Mice

    Get PDF
    Parkinson’s disease (PD) is characterized by dopaminergic nigrostriatal neurons degeneration and Lewy body pathology, mainly composed of α-synuclein (αSyn) fibrillary aggregates. We recently described that the neuronal phosphoprotein Synapsin III (Syn III) participates in αSyn pathology in PD brains and is a permissive factor for αSyn aggregation. Moreover, we reported that the gene silencing of Syn III in a human αSyn transgenic (tg) mouse model of PD at a pathological stage, manifesting marked insoluble αSyn deposits and dopaminergic striatal synaptic dysfunction, could reduce αSyn aggregates, restore synaptic functions and motor activities and exert neuroprotective effects. Interestingly, we also described that the monoamine reuptake inhibitor methylphenidate (MPH) can recover the motor activity of human αSyn tg mice through a dopamine (DA) transporter-independent mechanism, which relies on the re-establishment of the functional interaction between Syn III and α-helical αSyn. These findings support that the pathological αSyn/Syn III interaction may constitute a therapeutic target for PD. Here, we studied MPH and some of its analogues as modulators of the pathological αSyn/Syn III interaction. We identified 4-methyl derivative I-threo as a lead candidate modulating αSyn/Syn III interaction and having the ability to reduce αSyn aggregation in vitro and to restore the motility of αSyn tg mice in vivo more efficiently than MPH. Our results support that MPH derivatives may represent a novel class of αSyn clearing agents for PD therapy

    QSO Absorption Systems Detected in Ne VIII: High-Metallicity Clouds with a Large Effective Cross Section

    Full text link
    Using high resolution, high signal-to-noise ultraviolet spectra of the z = 0.9754 quasar PG1148+549 obtained with the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope, we study the physical conditions and abundances of NeVIII+OVI absorption line systems at z(abs) =0.68381, 0.70152, 0.72478. In addition to NeVIII and OVI, absorption lines from multiple ionization stages of oxygen (OII, OIII, OIV) are detected and are well-aligned with the more highly ionized species. We show that these absorbers are multiphase systems including hot gas (T ~ 10^{5.7} K) that produces NeVIII and OVI, and the gas metallicity of the cool phase ranges from Z = 0.3 Z_{solar} to supersolar. The cool (~10^{4} K) phases have densities n_{H} ~ 10^{-4} cm^{-3} and small sizes (< 4kpc); these cool clouds are likely to expand and dissipate, and the NeVIII may be within a transition layer between the cool gas and a surrounding, much hotter medium. The NeVIII redshift density, dN/dz = 7^{+7}_{-3}, requires a large number of these clouds for every L > 0.1L* galaxy and a large effective absorption cross section (>~ 100 kpc), and indeed, we find a star forming ~L* galaxy at the redshift of the z(abs)=0.72478 system, at an impact parameter of 217 kpc. Multiphase absorbers like these NeVIII systems are likely to be an important reservoir of baryons and metals in the circumgalactic media of galaxies.Comment: Final published version (Astrophysical Journal
    • 

    corecore