487 research outputs found

    Recruitment of insulin receptor substrate-1 by erbB3 impacts on IGF-IR signalling in oestrogen receptor-positive breast cancer cells

    Get PDF
    Insulin-like growth factor receptor (IGF-IR) signalling classically involves phosphorylation of insulin receptor substrate-1 (IRS-1) to recruit key down-stream signalling pathways effecting breast cancer cell proliferation and survival. Recently, we have shown a further capacity for IRS-1 to associate with the epidermal growth factor receptor (EGFR/erbB1), with activation of EGFR promoting recruitment and phosphorylation of IRS-1 in an oestrogen receptor (ER)-positive tamoxifen-resistant breast cancer cell line. In this study, we examined recruitment of IRS-1 by another member of the erbB receptor family, erbB3, in three ER-positive breast cancer cell lines. Our studies revealed an interaction between erbB3 and IRS-1 in MCF-7, T47D and BT474 cells with HRGβ1 treatment significantly enhancing this recruitment and promoting IRS-1 phosphorylation at tyrosine (Y) 612, a specific phosphoinositide 3-kinase (PI3K) binding site. IRS-1 appears to play a key role in erbB3 signalling in MCF-7 and T47D cells as its knockdown using siRNA greatly impaired HRGβ1 signalling via PI3K/AKT in these cell lines. This novel interaction may have clinical relevance as immunohistochemical analysis of ER-positive breast cancer patient samples revealed IRS-1 Y612 expression positively correlated with total erbB3, p-AKT and Ki67 expression. Importantly, we found that recruitment of IRS-1 by erbB3 impaired IRS-1 recruitment by IGF-IR in both MCF-7 and T47D cells, whilst blockade of IGF-1R enhanced erbB3/IRS-1 interaction and sensitised both cell lines to HRGβ1. Consequently, blockade of erbB3 signalling enhanced the effects of IGF-IR inhibition in these cells. In conclusion, these and previous findings suggest that IRS-1 can be recruited to IGF-1R, EGFR and erbB3 in ER-positive breast cancer cells and this may provide an adaptive resistance mechanism when these receptors are targeted individually. Consequently co-targeting of IGF-IR and erbB receptors may prove to be a more effective strategy for the treatment of ER-positive breast cancer

    Microarray studies reveal novel genes associated with endocrine resistance in breast cancer

    Get PDF
    Background Endocrine resistance is a major hurdle in breast cancer management, and determining the underlying factors driving its growth and aggressive behaviour should vastly improve treatment. Methods Microarray technology (BD Atlas Plastic Human 12 K Microarrays; GeneSifter software), verified by PCR, western blotting and immunocytochemisty, was used to identify genes increased in acquired resistant models to tamoxifen (TamR) or faslodex (FasR) as potential predictive/prognostic markers and new therapeutic targets. Results Alongside known breast cancer genes (β-catenin, PEA3, vitronectin, CD44), two novel genes in endocrine resistance were revealed (the latter never previously described in breast cancer): a securin/cell cycle regulator Pituitary Tumour Transforming Gene-1 (PTTG1), and GDNF receptor-alpha 3 (GFRα3) reported to promote cell survival signalling via RET coreceptor. Altered levels of PTTG1, GFRα3, or their associated family members were observed in further endocrine resistant states, including an additional faslodex resistant model that has progressed to a highly-aggressive state (FasR-Lt) and XMCF-7 cells resistant to oestrogen deprivation. PTTG1 and GFRα3 induction were also implicated in limiting response to anti-EGFR agents currently in breast cancer trials, with GFRα3 ligand (artemin) largely overcoming drug response. mRNA studies in clinical disease revealed PTTG1 associated with lymph node spread, high tumour grade and proliferation, while GFRα3 was enriched in ER-negative tumours and those expressing EGFR, profiles implying roles in clinical resistance and aggressive tumour behaviour. Promisingly, PTTG1 or GFRα3 siRNA knockdown promoted cell kill and inhibited proliferation in the resistant models. Conclusion Cumulatively, these data indicate PTTG1 and GFRα3 may provide useful biomarkers, and perhaps clinically relevant therapeutic targets for multiple resistant states

    Experimental Analysis of Nonlinear Impairments in Fibre Optic Transmission Systems up to 7.3 THz

    Get PDF
    An effective way of increasing the overall optical fibre capacity is by expanding the bandwidth used to transmit signals. In this paper, the impact of expanding the transmission bandwidth on the optical communication system is experimentally studied using the achievable rates as a performance metric. The trade-offs between the use of larger bandwidths and higher nonlinear interference (NLI) noise is experimentally and theoretically analysed. The growth of NLI noise is investigated for spectral bandwidths from 40 GHz up to 7.3 THz using 64-QAM and Nyquist pulse-shaping. Experimental results are shown to be in line with the predictions from the Gaussian-Noise model showing a logarithmic growth in NLI noise as the signal bandwidth is extended. A reduction of the information rate of only 10 % was found between linear and non-linear transmission across several transmission bandwidths, increasing up to 7.3 THz. Finally, the power transfer between channels due to stimulated Raman scattering effect is analysed showing up to 2 dB power tilt at optimum power for the largest transmitted bandwidth of 7.3 THz

    Rapid Transcriptional Pulsing Dynamics of High Expressing Retroviral Transgenes in Embryonic Stem Cells

    Get PDF
    Single cell imaging studies suggest that transcription is not continuous and occurs as discrete pulses of gene activity. To study mechanisms by which retroviral transgenes can transcribe to high levels, we used the MS2 system to visualize transcriptional dynamics of high expressing proviral integration sites in embryonic stem (ES) cells. We established two ES cell lines each bearing a single copy, self-inactivating retroviral vector with a strong ubiquitous human EF1α gene promoter directing expression of mRFP fused to an MS2-stem-loop array. Transfection of MS2-EGFP generated EGFP focal dots bound to the mRFP-MS2 stem loop mRNA. These transcription foci colocalized with the transgene integration site detected by immunoFISH. Live tracking of single cells for 20 minutes detected EGFP focal dots that displayed frequent and rapid fluctuations in transcription over periods as short as 25 seconds. Similarly rapid fluctuations were detected from focal doublet signals that colocalized with replicated proviral integration sites by immunoFISH, consistent with transcriptional pulses from sister chromatids. We concluded that retroviral transgenes experience rapid transcriptional pulses in clonal ES cell lines that exhibit high level expression. These events are directed by a constitutive housekeeping gene promoter and may provide precedence for rapid transcriptional pulsing at endogenous genes in mammalian stem cells

    Predicting Protein Kinase Specificity: Predikin Update and Performance in the DREAM4 Challenge

    Get PDF
    Predikin is a system for making predictions about protein kinase specificity. It was declared the “best performer” in the protein kinase section of the Peptide Recognition Domain specificity prediction category of the recent DREAM4 challenge (an independent test using unpublished data). In this article we discuss some recent improvements to the Predikin web server — including a more streamlined approach to substrate-to-kinase predictions and whole-proteome predictions — and give an analysis of Predikin's performance in the DREAM4 challenge. We also evaluate these improvements using a data set of yeast kinases that have been experimentally characterised, and we discuss the usefulness of Frobenius distance in assessing the predictive power of position weight matrices

    Post-Mortem diagnosis of dementia by informant interview

    Get PDF
    Abstract The diagnosis of normal cognition or dementia in the Brazilian Brain Bank of the Aging Brain Study Group (BBBABSG) has relied on postmortem interview with an informant. Objectives: To ascertain the sensitivity and specificity of postmortem diagnosis based on informant interview compared against the diagnosis established at a memory clinic. Methods: A prospective study was conducted at the BBBABSG and at the Reference Center for Cognitive Disorders (RCCD), a specialized memory clinic of the Hospital das Clínicas, University of São Paulo Medical School. Control subjects and cognitively impaired subjects were referred from the Hospital das Clínicas to the RCCD where subjects and their informants were assessed. The same informant was then interviewed at the BBBABSG. Specialists' panel consensus, in each group, determined the final diagnosis of the case, blind to other center's diagnosis. Data was compared for frequency of diagnostic equivalence. For this study, the diagnosis established at the RCCD was accepted as the gold standard. Sensitivity and specificity were computed. Results: Ninety individuals were included, 45 with dementia and 45 without dementia (26 cognitively normal and 19 cognitively impaired but non-demented). The informant interview at the BBBABSG had a sensitivity of 86.6% and specificity of 84.4% for the diagnosis of dementia, and a sensitivity of 65.3% and specificity of 93.7% for the diagnosis of normal cognition. Conclusions: The informant interview used at the BBBABSG has a high specificity and sensitivity for the diagnosis of dementia as well as a high specificity for the diagnosis of normal cognition

    Lower age at menarche affects survival in older Australian women: results from the Australian Longitudinal Study of Ageing

    Get PDF
    Extent: 10p.Background: While menarche indicates the beginning of a woman's reproductive life, relatively little is known about the association between age at menarche and subsequent morbidity and mortality. We aimed to examine the effect of lower age at menarche on all-cause mortality in older Australian women over 15 years of follow-up. Methods: Data were drawn from the Australian Longitudinal Study of Ageing (n = 1,031 women aged 65-103 years). We estimated the hazard ratio (HR) associated with lower age at menarche using Cox proportional hazards models, and adjusted for a broad range of reproductive, demographic, health and lifestyle covariates. Results: During the follow-up period, 673 women (65%) died (average 7.3 years (SD 4.1) of follow-up for decedents). Women with menses onset < 12 years of age (10.7%; n = 106) had an increased hazard of death over the follow-up period (adjusted HR 1.28; 95%CI 0.99-1.65) compared with women who began menstruating aged ≥ 12 years (89.3%; n = 883). However, when age at menarche was considered as a continuous variable, the adjusted HRs associated with the linear and quadratic terms for age at menarche were not statistically significant at a 5% level of significance (linear HR 0.76; 95%CI 0.56 - 1.04; quadratic HR 1.01; 95%CI 1.00-1.02). Conclusion: Women with lower age at menarche may have reduced survival into old age. These results lend support to the known associations between earlier menarche and risk of metabolic disease in early adulthood. Strategies to minimise earlier menarche, such as promoting healthy weights and minimising family dysfunction during childhood, may also have positive longer-term effects on survival in later life.Lynne C Giles, Gary FV Glonek, Vivienne M Moore, Michael J Davies and Mary A Luszc

    Capacity estimates for optical transmission based on the nonlinear Fourier transform

    Get PDF
    What is the maximum rate at which information can be transmitted error-free in fibre-optic communication systems? For linear channels, this was established in classic works of Nyquist and Shannon. However, despite the immense practical importance of fibre-optic communications providing for >99% of global data traffic, the channel capacity of optical links remains unknown due to the complexity introduced by fibre nonlinearity. Recently, there has been a flurry of studies examining an expected cap that nonlinearity puts on the information-carrying capacity of fibre-optic systems. Mastering the nonlinear channels requires paradigm shift from current modulation, coding and transmission techniques originally developed for linear communication systems. Here we demonstrate that using the integrability of the master model and the nonlinear Fourier transform, the lower bound on the capacity per symbol can be estimated as 10.7 bits per symbol with 500 GHz bandwidth over 2,000 km
    corecore