561 research outputs found

    Inventory control for point-of-use locations in hospitals

    Get PDF
    Most inventory management systems at hospital departments are characterised by lost sales, periodic reviews with short lead times, and limited storage capacity. We develop two types of exact models that deal with all these characteristics. In a capacity model, the service level is maximised subject to a capacity restriction, and in a service model the required capacity is minimised subject to a service level restriction. We also formulate approximation models applicable for any lost-sales inventory system (cost objective, no lead time restrictions etc). For the capacity model, we develop a simple inventory rule to set the reorder levels and order quantities. Numerical results for this inventory rule show an average deviation of 1% from the optimal service levels. We also embed the single-item models in a multi-item system. Furthermore, we compare the performance of fixed order size replenishment policies and (R, s, S) policies

    Location of Immunization and Interferon-γ Are Central to Induction of Salivary Gland Dysfunction in Ro60 Peptide Immunized Model of Sjögren's Syndrome

    Get PDF
    INTRODUCTION: Anti-Ro antibodies can be found in the serum of the majority of patients with Sjögren's syndrome (SS). Immunization with a 60-kDa Ro peptide has been shown to induce SS-like symptoms in mice. The aim of this study was to investigate factors involved in salivary gland (SG) dysfunction after immunization and to test whether the induction of SS could be improved. METHODS: Ro60 peptide immunization was tested in Balb/c mice, multiple antigenic peptide (MAP)-Ro60 and Pertussis toxin (PTX) were tested in SJL/J mice. In addition, two injection sites were compared in these two strains: the abdominal area and the tailbase. Each group of mice was tested for a loss of SG function, SG lymphocytic infiltration, anti-Ro and anti-La antibody formation, and cytokine production in cultured cells or homogenized SG extracts. RESULTS: Ro60 peptide immunization in the abdominal area of female Balb/c mice led to impaired SG function, which corresponded with increased Th1 cytokines (IFN-γ and IL-12) systemically and locally in the SG. Moreover, changing the immunization conditions to MAP-Ro60 in the abdominal area, and to lesser extend in the tailbase, also led to impaired SG function in SJL/J mice. As was seen in the Balb/c mice, increased IFN-γ in the SG draining lymph nodes accompanied the SG dysfunction. However, no correlation was observed with anti-MAP-Ro60 antibody titers, and there was no additional effect on disease onset or severity. CONCLUSIONS: Effective induction of salivary gland dysfunction after Ro60 peptide immunization depended on the site of injection. Disease induction was not affected by changing the immunization conditions. However, of interest is that the mechanism of action of Ro60 peptide immunization appears to involve an increase in Th1 cytokines, resulting in the induction of SG dysfunction

    Age, sex, and setting in the etiology of stroke study (ASSESS): Study design and protocol

    Get PDF
    RATIONALE: Stroke etiology and risk factors vary by age, sex, setting (hospital or community-based) and by region. Identifying these differences would improve our understanding of stroke etiology, diagnosis, and treatment. AIM: The Age, Sex and Setting in the Etiology of Stroke Study (ASSESS) is a multicenter cohort study to assess differences in stroke etiology. METHODS AND DESIGN: Data from all centers will be categorized according to age, sex, setting, stroke subtypes. Centers with extensive hospital- or community-based data regarding stroke from Argentina, Australia, Canada, India, Iran, Italy, Ghana, Nigeria, Thailand, the United Kingdom and the United States have agreed to participate so far. STUDY OUTCOMES: The primary outcome includes differences in stroke etiology in study centers. The secondary outcomes include stroke incidence, risk factors, preventive strategies, and short- and long-term outcomes. CONCLUSION: ASSESS will enable comparisons of data from different regions to determine the age and sex distribution of the most common causes of stroke in each setting. This will help clinicians to tailor the assessment and treatment of stroke patients on the basis of their specific local characteristics. It will also empower stroke epidemiologists to design preventive measures by targeting the specific characteristics of each population

    Adenocarcinoma of the caecum metastatic to the bladder: an unusual cause of haematuria

    Get PDF
    BACKGROUND: Primary malignancies of colorectal origin can metastasise to the bladder. Reports are however extremely rare, particularly from the caecum. CASE REPORT: The report describes the case of a 45-year old male with Duke's B caecal carcinoma treated with a laparoscopically-assisted right hemicolectomy and adjuvant 5-Fluorouracil chemotherapy. Subsequently, a metastatic lesion to the bladder was demonstrated and successfully excised by partial cystectomy. CONCLUSION: In order that optimal therapeutic options can be determined, it is important for clinicians to distinguish between primary disease of the bladder and other causes of haematuria. Various immunohistochemical techniques attempt to differentiate primary adenocarcinoma of the bladder from secondary colorectal adenocarcinoma. Suspicion of metastatic disease must be raised when histologically unusual bladder tumours are identified

    How a Diverse Research Ecosystem Has Generated New Rehabilitation Technologies: Review of NIDILRR’s Rehabilitation Engineering Research Centers

    Get PDF
    Over 50 million United States citizens (1 in 6 people in the US) have a developmental, acquired, or degenerative disability. The average US citizen can expect to live 20% of his or her life with a disability. Rehabilitation technologies play a major role in improving the quality of life for people with a disability, yet widespread and highly challenging needs remain. Within the US, a major effort aimed at the creation and evaluation of rehabilitation technology has been the Rehabilitation Engineering Research Centers (RERCs) sponsored by the National Institute on Disability, Independent Living, and Rehabilitation Research. As envisioned at their conception by a panel of the National Academy of Science in 1970, these centers were intended to take a “total approach to rehabilitation”, combining medicine, engineering, and related science, to improve the quality of life of individuals with a disability. Here, we review the scope, achievements, and ongoing projects of an unbiased sample of 19 currently active or recently terminated RERCs. Specifically, for each center, we briefly explain the needs it targets, summarize key historical advances, identify emerging innovations, and consider future directions. Our assessment from this review is that the RERC program indeed involves a multidisciplinary approach, with 36 professional fields involved, although 70% of research and development staff are in engineering fields, 23% in clinical fields, and only 7% in basic science fields; significantly, 11% of the professional staff have a disability related to their research. We observe that the RERC program has substantially diversified the scope of its work since the 1970’s, addressing more types of disabilities using more technologies, and, in particular, often now focusing on information technologies. RERC work also now often views users as integrated into an interdependent society through technologies that both people with and without disabilities co-use (such as the internet, wireless communication, and architecture). In addition, RERC research has evolved to view users as able at improving outcomes through learning, exercise, and plasticity (rather than being static), which can be optimally timed. We provide examples of rehabilitation technology innovation produced by the RERCs that illustrate this increasingly diversifying scope and evolving perspective. We conclude by discussing growth opportunities and possible future directions of the RERC program

    The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) family

    Get PDF
    The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) enzymes are secreted, multi-domain matrix-associated zinc metalloendopeptidases that have diverse roles in tissue morphogenesis and patho-physiological remodeling, in inflammation and in vascular biology. The human family includes 19 members that can be sub-grouped on the basis of their known substrates, namely the aggrecanases or proteoglycanases (ADAMTS1, 4, 5, 8, 9, 15 and 20), the procollagen N-propeptidases (ADAMTS2, 3 and 14), the cartilage oligomeric matrix protein-cleaving enzymes (ADAMTS7 and 12), the von-Willebrand Factor proteinase (ADAMTS13) and a group of orphan enzymes (ADAMTS6, 10, 16, 17, 18 and 19). Control of the structure and function of the extracellular matrix (ECM) is a central theme of the biology of the ADAMTS, as exemplified by the actions of the procollagen-N-propeptidases in collagen fibril assembly and of the aggrecanases in the cleavage or modification of ECM proteoglycans. Defects in certain family members give rise to inherited genetic disorders, while the aberrant expression or function of others is associated with arthritis, cancer and cardiovascular disease. In particular, ADAMTS4 and 5 have emerged as therapeutic targets in arthritis. Multiple ADAMTSs from different sub-groupings exert either positive or negative effects on tumorigenesis and metastasis, with both metalloproteinase-dependent and -independent actions known to occur. The basic ADAMTS structure comprises a metalloproteinase catalytic domain and a carboxy-terminal ancillary domain, the latter determining substrate specificity and the localization of the protease and its interaction partners; ancillary domains probably also have independent biological functions. Focusing primarily on the aggrecanases and proteoglycanases, this review provides a perspective on the evolution of the ADAMTS family, their links with developmental and disease mechanisms, and key questions for the future

    Efferent Projections of Prokineticin 2 Expressing Neurons in the Mouse Suprachiasmatic Nucleus

    Get PDF
    The suprachiasmatic nucleus (SCN) in the hypothalamus is the predominant circadian clock in mammals. To function as a pacemaker, the intrinsic timing signal from the SCN must be transmitted to different brain regions. Prokineticin 2 (PK2) is one of the candidate output molecules from the SCN. In this study, we investigated the efferent projections of PK2-expressing neurons in the SCN through a transgenic reporter approach. Using a bacterial artificial chromosome (BAC) transgenic mouse line, in which the enhanced green fluorescence protein (EGFP) reporter gene expression was driven by the PK2 promoter, we were able to obtain an efferent projections map from the EGFP-expressing neurons in the SCN. Our data revealed that EGFP-expressing neurons in the SCN, hence representing some of the PK2-expressing neurons, projected to many known SCN target areas, including the ventral lateral septum, medial preoptic area, subparaventricular zone, paraventricular nucleus, dorsomedial hypothalamic nucleus, lateral hypothalamic area and paraventricular thalamic nucleus. The efferent projections of PK2-expressing neurons supported the role of PK2 as an output molecule of the SCN
    • …
    corecore