1,447 research outputs found

    Association of specific chromosome alterations with tumour phenotype in posterior uveal melanoma

    Get PDF
    Posterior uveal melanomas have recurrent alterations of chromosomes 1, 3, 6 and 8. In particular, changes of chromosomes 3 and 8 occur in association, appear to characterize those tumours with a ciliary body component, and have been shown to be of prognostic significance. The relevance of other chromosome alterations is less certain. We have performed cytogenetic analysis on 42 previously untreated primary posterior uveal melanomas. Of interest was the observation that as tumour size increased the involvement of specific chromosome changes, and the amount of chromosome abnormalities likewise increased. Loss, or partial deletions, of the short arm of chromosome 1 were found to associate with larger ciliary body melanomas; typically, loss of the short arm resulted from unbalanced translocations, the partners of which varied. Trisomy of chromosome 21 occurred more often in ciliary body melanomas, whilst rearrangements of chromosomes 6 and 11 were primarily related to choroidal melanomas. Our results imply that alterations of chromosome 1 are important in the progression of some uveal melanomas, and that other chromosome abnormalities, besides those of chromosomes 3 and 8, are associated with ocular tumours of particular locations. © 2000 Cancer Research Campaig

    Recommendations for exercise adherence measures in musculoskeletal settings : a systematic review and consensus meeting (protocol)

    Get PDF
    Background: Exercise programmes are frequently advocated for the management of musculoskeletal disorders; however, adherence is an important pre-requisite for their success. The assessment of exercise adherence requires the use of relevant and appropriate measures, but guidance for appropriate assessment does not exist. This research will identify and evaluate the quality and acceptability of all measures used to assess exercise adherence within a musculoskeletal setting, seeking to reach consensus for the most relevant and appropriate measures for application in research and/or clinical practice settings. Methods/design: There are two key stages to the proposed research. First, a systematic review of the quality and acceptability of measures used to assess exercise adherence in musculoskeletal disorders; second, a consensus meeting. The systematic review will be conducted in two phases and reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines to ensure a robust methodology. Phase one will identify all measures that have been used to assess exercise adherence in a musculoskeletal setting. Phase two will seek to identify published and unpublished evidence of the measurement and practical properties of identified measures. Study quality will be assessed against the COnsensus-based Standards for the selection of health Measurement Instruments (COSMIN) guidelines. A shortlist of best quality measures will be produced for consideration during stage two: a meeting of relevant stakeholders in the United Kingdom during which consensus on the most relevant and appropriate measures of exercise adherence for application in research and/or clinical practice settings will be sought. Discussion: This study will benefit clinicians who seek to evaluate patients’ levels of exercise adherence and those intending to undertake research, service evaluation, or audit relating to exercise adherence in the musculoskeletal field. The findings will impact upon new research studies which aim to understand the factors that predict adherence with exercise and which test different adherence-enhancing interventions. PROSPERO reference: CRD4201300621

    Activity Dependent Protein Degradation Is Critical for the Formation and Stability of Fear Memory in the Amygdala

    Get PDF
    Protein degradation through the ubiquitin-proteasome system [UPS] plays a critical role in some forms of synaptic plasticity. However, its role in memory formation in the amygdala, a site critical for the formation of fear memories, currently remains unknown. Here we provide the first evidence that protein degradation through the UPS is critically engaged at amygdala synapses during memory formation and retrieval. Fear conditioning results in NMDA-dependent increases in degradation-specific polyubiquitination in the amygdala, targeting proteins involved in translational control and synaptic structure and blocking the degradation of these proteins significantly impairs long-term memory. Furthermore, retrieval of fear memory results in a second wave of NMDA-dependent polyubiquitination that targets proteins involved in translational silencing and synaptic structure and is critical for memory updating following recall. These results indicate that UPS-mediated protein degradation is a major regulator of synaptic plasticity necessary for the formation and stability of long-term memories at amygdala synapses

    A methodology for parameter estimation in seaweed productivity modelling

    Get PDF
    This paper presents a combined approach for parameter estimation in models of primary production. The focus is on gross primary production and nutrient assimilation by seaweeds. A database of productivity determinations, biomass and mortality measurements and nutrient uptake rates obtained over one year for Gelidium sesquipedale in the Atlantic Ocean off Portugal has been used. Annual productivity was estimated by harvesting methods, and empirical relationships using mortality/ wave energy and respiration rates have been derived to correct for losses and to convert the estimates to gross production. In situ determinations of productivity have been combined with data on the light climate (radiation periods, intensity, mean turbidity) to give daily and annual productivity estimates. The theoretical nutrient uptake calculated using a 'Redfield ratio' approach and determinations of in situ N and P consumption by the algae during incubation periods have also been compared. The results of the biomass difference and incubation approaches are discussed in order to assess the utility of coefficients determined in situ for parameter estimation in seaweed production models

    Pathogenesis of adolescent idiopathic scoliosis in girls - a double neuro-osseous theory involving disharmony between two nervous systems, somatic and autonomic expressed in the spine and trunk: possible dependency on sympathetic nervous system and hormones with implications for medical therapy

    Get PDF
    Anthropometric data from three groups of adolescent girls - preoperative adolescent idiopathic scoliosis (AIS), screened for scoliosis and normals were analysed by comparing skeletal data between higher and lower body mass index subsets. Unexpected findings for each of skeletal maturation, asymmetries and overgrowth are not explained by prevailing theories of AIS pathogenesis. A speculative pathogenetic theory for girls is formulated after surveying evidence including: (1) the thoracospinal concept for right thoracic AIS in girls; (2) the new neuroskeletal biology relating the sympathetic nervous system to bone formation/resorption and bone growth; (3) white adipose tissue storing triglycerides and the adiposity hormone leptin which functions as satiety hormone and sentinel of energy balance to the hypothalamus for long-term adiposity; and (4) central leptin resistance in obesity and possibly in healthy females. The new theory states that AIS in girls results from developmental disharmony expressed in spine and trunk between autonomic and somatic nervous systems. The autonomic component of this double neuro-osseous theory for AIS pathogenesis in girls involves selectively increased sensitivity of the hypothalamus to circulating leptin (genetically-determined up-regulation possibly involving inhibitory or sensitizing intracellular molecules, such as SOC3, PTP-1B and SH2B1 respectively), with asymmetry as an adverse response (hormesis); this asymmetry is routed bilaterally via the sympathetic nervous system to the growing axial skeleton where it may initiate the scoliosis deformity (leptin-hypothalamic-sympathetic nervous system concept = LHS concept). In some younger preoperative AIS girls, the hypothalamic up-regulation to circulating leptin also involves the somatotropic (growth hormone/IGF) axis which exaggerates the sympathetically-induced asymmetric skeletal effects and contributes to curve progression, a concept with therapeutic implications. In the somatic nervous system, dysfunction of a postural mechanism involving the CNS body schema fails to control, or may induce, the spinal deformity of AIS in girls (escalator concept). Biomechanical factors affecting ribs and/or vertebrae and spinal cord during growth may localize AIS to the thoracic spine and contribute to sagittal spinal shape alterations. The developmental disharmony in spine and trunk is compounded by any osteopenia, biomechanical spinal growth modulation, disc degeneration and platelet calmodulin dysfunction. Methods for testing the theory are outlined. Implications are discussed for neuroendocrine dysfunctions, osteopontin, sympathoactivation, medical therapy, Rett and Prader-Willi syndromes, infantile idiopathic scoliosis, and human evolution. AIS pathogenesis in girls is predicated on two putative normal mechanisms involved in trunk growth, each acquired in evolution and unique to humans

    ruvA Mutants that resolve Holliday junctions but do not reverse replication forks

    Get PDF
    RuvAB and RuvABC complexes catalyze branch migration and resolution of Holliday junctions (HJs) respectively. In addition to their action in the last steps of homologous recombination, they process HJs made by replication fork reversal, a reaction which occurs at inactivated replication forks by the annealing of blocked leading and lagging strand ends. RuvAB was recently proposed to bind replication forks and directly catalyze their conversion into HJs. We report here the isolation and characterization of two separation-of-function ruvA mutants that resolve HJs, based on their capacity to promote conjugational recombination and recombinational repair of UV and mitomycin C lesions, but have lost the capacity to reverse forks. In vivo and in vitro evidence indicate that the ruvA mutations affect DNA binding and the stimulation of RuvB helicase activity. This work shows that RuvA's actions at forks and at HJs can be genetically separated, and that RuvA mutants compromised for fork reversal remain fully capable of homologous recombination

    Implementation of the 2017 Berlin Concussion in Sport Group Consensus Statement in contact and collision sports: a joint position statement from 11 national and international sports organisations.

    Get PDF
    The 2017 Berlin Concussion in Sport Group Consensus Statement provides a global summary of best practice in concussion prevention, diagnosis and management, underpinned by systematic reviews and expert consensus. Due to their different settings and rules, individual sports need to adapt concussion guidelines according to their specific regulatory environment. At the same time, consistent application of the Berlin Consensus Statement's themes across sporting codes is likely to facilitate superior and uniform diagnosis and management, improve concussion education and highlight collaborative research opportunities. This document summarises the approaches discussed by medical representatives from the governing bodies of 10 different contact and collision sports in Dublin, Ireland in July 2017. Those sports are: American football, Australian football, basketball, cricket, equestrian sports, football/soccer, ice hockey, rugby league, rugby union and skiing. This document had been endorsed by 11 sport governing bodies/national federations at the time of being published

    Simulation Modifies Prehension: Evidence for a Conjoined Representation of the Graspable Features of an Object and the Action of Grasping It

    Get PDF
    Movement formulas, engrams, kinesthetic images and internal models of the body in action are notions derived mostly from clinical observations of brain-damaged subjects. They also suggest that the prehensile geometry of an object is integrated in the neural circuits and includes the object's graspable characteristics as well as its semantic properties. In order to determine whether there is a conjoined representation of the graspable characteristics of an object in relation to the actual grasping, it is necessary to separate the graspable (low-level) from the semantic (high-level) properties of the object. Right-handed subjects were asked to grasp and lift a smooth 300-g cylinder with one hand, before and after judging the level of difficulty of a “grasping for pouring” action, involving a smaller cylinder and using the opposite hand. The results showed that simulated grasps with the right hand exert a direct influence on actual motor acts with the left hand. These observations add to the evidence that there is a conjoined representation of the graspable characteristics of the object and the biomechanical constraints of the arm
    corecore