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Chapter 4
Modeling Higher-Order Network
Adaptation by Multilevel Network
Reification

Abstract In network models for real-world domains, often some form of network
adaptation has to be incorporated, based on certain network adaptation principles. In
some cases, also higher-order adaptation occurs: the adaptation principles them-
selves also change over time. To model such multilevel adaptation processes, it is
useful to have some generic architecture. Such an architecture should describe and
distinguish the dynamics within the network (base level), but also the dynamics of
the network itself by certain adaptation principles (first-order adaptation), and also
the adaptation of these adaptation principles (second-order adaptation), and maybe
still more levels of higher-order adaptation. This chapter introduces a multilevel
network architecture for this, based on the notion of network reification. Reification
of a network occurs when a base network is extended by adding explicit reification
states representing the characteristics of the structure of the base network
(Connectivity, Aggregation, and Timing). In Chap. 3, it was shown how this con-
struction can be used to explicitly represent network adaptation principles within a
network. In the current chapter, it is discussed how, when the reified network is itself
also reified, also second-order adaptation principles can be explicitly represented.
For the multilevel network reification construction introduced here, it is shown how
it can be used to model plasticity and metaplasticity as known from Cognitive
Neuroscience. Here, plasticity describes how connections between neurons change
over time, for example, based on a first-order adaptation principle for Hebbian
learning, and metaplasticity describes second-order adaptation principles deter-
mining how the extent of plasticity is affected by certain circumstances; for example,
under which circumstances plasticity will be accelerated or decelerated.

4.1 Introduction

Within the complex dynamical systems area, adaptive behaviour is an interesting
and quite relevant challenge, addressed in various ways; see, for example, Helbing
et al. (2015), Perc and Szolnoki (2010). In particular for network-oriented dynamic
modeling approaches, network models for real-world domains often show some
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form of network adaptation based on certain network adaptation principles. Such
principles describe how certain characteristics of the network structure change over
time, for example, the connection weights in Mental Networks with Hebbian
learning (Hebb 1949) or in Social Networks with bonding based on homophily;
e.g., Byrne (1986), McPherson et al. (2001), Pearson et al. (2006), Sharpanskykh
and Treur 2014). Sometimes also higher-order adaptation occurs in the sense that
the adaptation principles for a network themselves also change over time. For
example, plasticity in Mental Networks as described, for example, by Hebbian
learning is not a constant feature, but usually varies over time, according to what in
Cognitive Neuroscience has been called metaplasticity; e.g., Abraham and Bear
(1996), Magerl et al. (2018), Parsons (2018), Schmidt et al. (2013), Sehgal et al.
(2013), Zelcer et al. (2006). For more examples of processes which are adaptive of
different orders, see Chap. 1, Sects. 1.2 and 1.3.

To model such multilevel network adaptation processes in a principled manner it
is useful to have some generic architecture. Such architecture should be able to
distinguish and describe:

(1) the dynamics within the base network
(2) the dynamics of the base network structure by network adaptation principles

(first-order adaptation)
(3) the adaptation of these adaptation principles (second-order adaptation)
(4) interactions between the levels
(5) and maybe still more levels of higher-order adaptation.

In the current chapter, it is shown how such distinctions indeed can be made within
a Network-Oriented Modeling framework using the notion of reified network
architecture.

As also described in Chap. 3, reification is known from different scientific areas.
According to the Merriam-Webster and Oxford dictionaries, it literally means
representing something abstract as a material or concrete thing, or making some-
thing abstract more concrete or real. Reification offers substantial advantages in
modeling and programming languages, as shown for other areas of AI and
Computer Science; e.g., Bowen and Kowalski (1982), Demers and Malenfant
(1995), Galton (2006), Hofstadter (1979), Sterling and Shapiro (1996), Sterling and
Beer (1989), Weyhrauch (1980). Modeling adaptivity and enhanced expressive
power are some of these advantages. Network reification has similar advantages. In
Chap. 3, it has been shown how network reification can be used to explicitly
represent adaptation principles for networks in a transparent and unified manner.
Examples of such adaptation principles are, among others, principles for Hebbian
learning (to model plasticity in the brain) and for bonding based on homophily (to
model adaptive social networks). Using network reification, adaptive Mental
Networks and adaptive Social Networks can be addressed well, as shown by many
examples in Chap. 3.

Including reification states for the characteristics of the base network structure
(connection weights, speed factors, and combination functions and their parame-
ters) in the extended network is one step. A next step is defining proper
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temporal-causal relations for them and relating them to the other states. Then a
reified network is obtained that explicitly represents the characteristics of the base
network, and, moreover, how this base network evolves over time, based on
adaptation principles that change the causal network relations. In Chap. 3, it was
shown how this can be used for a variety of adaptation principles known from
Cognitive Neuroscience and Social Science.

Such reified adaptive networks form again a basic network structure defined by
certain characteristics, such as learning rate or adaptation speed of connections.
Adaptation principles may be adaptive themselves too, according to certain
second-order adaptation principles. From recent literature, it has become clear that
in real-world domains often these characteristics can still change over time, for
example, in the case of metaplasticity. The notion of metaplasticity as already
mentioned above, has become a focus of study in empirical literature such as
Arnold et al. (2015), Chandra and Barkai (2018), Daimon et al. (2017), Magerl
et al. (2018), Parsons (2018), Robinson et al. (2016), Sehgal et al. (2013), Schmidt
et al. (2013), Zelcer et al. (2006). This area of higher-order adaptivity is a next
challenge to be addressed. To this end, in the current chapter a construction of
multilevel reification is illustrated for the Network-Oriented Modeling approach
based on temporal-causal networks (Treur 2016, 2019). By an appropriate number
of iterations, this multilevel reification construction introduced here can be used to
model higher-order adaptivity of any level. The multilevel reification architecture
has been implemented by the author in Matlab, as will be discussed in Chap. 9. The
homophily context is used in this chapter as the first application of a second-order
adaptive Social Network for the Social Science area, and the context of plasticity
and metaplasticity as a second application for a second-order adaptive Mental
Network in the Cognitive Neuroscience area.

In this chapter in Sect. 4.2, the Network-Oriented Modeling approach based on
temporal-causal networks is briefly summarized. Next, in Sect. 4.3 the network
reification concept is summarized, and in Sect. 4.4 the more general multilevel
network reification construction is introduced. Moreover, it is shown how it can
model examples of second-order network adaptivity. This is illustrated by a
second-order adaptive network for plasticity and metaplasticity from Cognitive
Neuroscience. In Sect. 4.5 example simulations for this multilevel network reifi-
cation example are presented. Section 4.6 discusses the added complexity in a
multilevel reification architecture. Section 4.7 is a discussion.

4.2 Structure and Dynamics of Temporal-Causal
Networks

The network structure of a temporal-causal network model can be described con-
ceptually by a graph with nodes and directed connections and a number of labels for
such a graph for connectivity, aggregation, and timing:
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(a) Connectivity

• In terms of connection weights xX,Y; see Table 4.1, upper part, and Fig. 4.1
for an example of a basic fragment of a network with states X1, X2 and Y,
and labels xX1;Y , xX2;Y for connection weights.

(b) Aggregation

• In terms of combination functions cY(..); a library with a number of standard
combination functions is available, but also new functions can be added.
Such functions are just declarative mathematical objects that relate real
numbers to real numbers without any procedural elements involved, i.e., c:
Rk ! R.

(c) Timing

• In terms of speed factors ηY.

In the lower part of Table 4.1, it is shown how the numerical representation
of the network’s dynamics is defined in terms of the above labels; see also

Table 4.1 Conceptual and numerical representation of a temporal-causal network structure

Concepts Notation Explanation

States and
connections

X, Y,
X ! Y

Describes the nodes and links of a network structure (e.g., in
graphical or matrix format)

Connection weight xX,Y The connection weight xX,Y 2 [−1, 1] represents the strength
of the causal impact of state X on state Y with X!Y

Aggregating
multiple impacts

cY(..) For each state Y a combination function cY(..) is chosen to
combine the causal impacts of other states on state Y

Timing of the
causal effect

ηY For each state Y a speed factor ηY � 0 is used to represent
how fast a state is changing upon causal impact

Concepts Numerical representation Explanation

State values
over time t

Y(t) At each time point t each
state Y in the model has
a real number value in
[0, 1]

Single causal
impact

impactX;Y ðtÞ
¼ xX;YXðtÞ

At t state X with
connection to state Y has
an impact on Y, using
weight xX,Y

Aggregating
multiple
impacts

aggimpactY ðtÞ
¼ cY ðimpactX1 ;Y ðtÞ; . . .; impactXk ;Y ðtÞÞ
¼ cY ðxX1 ;YX1ðtÞ; . . .;xXk ;YXkðtÞÞ

The aggregated impact
of multiple states Xi on
Y at t, is determined
using combination
function cY(..)

Timing of
the causal
effect

YðtþDtÞ ¼ YðtÞþ gY aggimpactY ðtÞ � YðtÞ½ �Dt ¼
YðtÞþ gY ½cY ðxX1 ;YX1ðtÞ; . . .;xXk ;YXkðtÞÞ � YðtÞ�Dt

The causal impact on
Y is exerted over time
gradually, using speed
factor ηY

Adopted from Treur (2019)
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Treur (2016), Chap. 2. Here X1, …, Xk are the states from which state Y receives
incoming connections. These formulas in the last row in Table 4.1 define the
detailed dynamic semantics of a temporal-causal network. They can be used for
mathematical analysis and for simulation, and can be written in differential equation
format as follows:

dYðtÞ=dt ¼ gY cY xX1;YX1 tð Þ; . . .;xXk ;YXk tð Þ� �� Y tð Þ� � ð4:1Þ

Examples of combination functions are the identity id(.) for states with impact
from only one other state, the scaled sum ssumk(.) with scaling factor k, the scaled
minimum function smink(..) and maximum function smaxk(..), and the advanced
logistic sum combination function alogisticr,s(..) with steepness r and threshold s;
see also Treur (2016, Chap. 2, Table 2.10):

id Vð Þ ¼ V

ssumk V1; . . .;Vkð Þ ¼ V1 þ � � � þVk

k

smink V1; . . .;Vkð Þ ¼ min V1; . . .;Vkð Þ
k

smaxk V1; . . .;Vkð Þ ¼ max V1; . . .;Vkð Þ
k

alogisticr;s V1; . . .;Vkð Þ ¼ 1
1þ e�rðV1 þ ��� þVk�sÞ �

1
1þ er sÞ

� �
1þ e�r sð Þ

ð4:2Þ

Note that for basic combination functions, specific parameters are considered.
Examples are the scaling factor k, the steepness r, and the threshold s above. These
parameters can also be written as arguments in the function, for example,
alogistic r; s;V1; . . .;Vkð Þ, or in lists as alogistic ½r; s�; ½V1; . . .;Vk�ð Þ; this actually is
how they are represented in the software environment.

Examples of combination functions applied in particular for reification states in
reified adaptive networks (introduced in Chap. 3, Sect. 3.6.1) are the following

Fig. 4.1 Fragment of a temporal-causal network structure in a labeled graph representation. The
basic elements are nodes and their connections, with for each node Y a speed factor ηY and a
combination function cY(..), and for each connection from X to Y a connection weight xX,Y
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• Hebbian learning (see Sect. 4.4)

hebbl V1;V2;Wð Þ ¼ V1V2 1�Wð Þþ lW ð4:3Þ

Here V1, V2 refer to the activation levels of two connected states and W to their
connection weight; l is a parameter for the persistence factor.

• Simple linear homophily (see Chap. 6)

slhomoa;s V1;V2;Wð Þ ¼ W þ aW 1�Wð Þ s� V1 � V2j jð Þ ð4:4Þ

Here V1, V2 refer to the activation levels of the states of two connected persons
and W to their connection weight; s is a tipping point parameter and a is a
homophily modulation parameter. This is applied to model bonding based on
homophily; see Chap. 6.

The set of already available combination functions forms a combination function
library (with at the time of writing 35 functions), which can be chosen as basic
combination functions during the design of a network model. These functions are
declarative mathematical functions relating real numbers to real numbers without
any procedural or process elements.

4.3 Addressing Network Adaptation by Network
Reification

Recall from Chap. 3 that network reification is a construction principle by which a
base network is extended by extra states that represent the base network’s structure.
This construction principle is briefly summarized here.

4.3.1 Extending the Network by Reification States

The added states represent specific characteristics of the network structure. They are
what are called reification states for these characteristics, in other words, the
characteristics are reified by these states. More specifically, these reification states
represent the labels for connection weights, combination functions, and speed
factors shown in Table 4.1. For connection weights xXi;Y for the incoming con-
nections from states Xi to state Y and speed factors ηY for state Y, their reification
states WXi;Y and HY represent the value of them, and the vector of reification states
CY = (C1,Y, C2,Y, ….) represents the weights for the chosen basic combination
functions for state Y; moreover, reification states Pi,j,Y represent the adaptive
parameters of combination functions. In Fig. 4.2, the reification states are depicted
in the upper (blue) plane, whereas the states of the base network are in the lower
(pink) plane.
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Within the reified network causal relations for the reification states for charac-
teristics of a network can be defined: incoming connections affecting them, and
outgoing connections from them to the related base network states. Such connec-
tions are the way in which adaptation principles are explicitly represented within the
(reified) network; see also the many examples in Chap. 3. The downward pink
arrows in Fig. 4.2 define how the reification states contribute their special effect to
an aggregated impact on the related base network state.

These downward connections in Fig. 4.2 and the combination functions for the
base states are defined in a generic manner. The general pattern is that the reification
state roles WXi;Y , HY and C j,Y and Pi,j,Y for connection weights, speed factors,
combination function weights, and combination function parameter values have a
role-specific causal connection to state Y in the base network, as they all affect Y in
their own role-dependent way. All depicted downward connections automatically
get weight 1, so that there is a one-to-one correspondence between the base char-
acteristic and its reification, and in the reified network the speed factors of the base
states are set at 1 too. For the base states, new combination functions are needed
that will be defined below (see also Chap. 3, Sect. 3.5). The different components

C1;Y ;C2;Y ; . . .

for CY are explained as follows. During modeling a sequence of basic combination
functions

bcf1ð::Þ; . . .; bcfmð::Þ

is chosen from the function library discussed in Sect. 4.2 (in which also new
functions can be added), to be used in the specific application addressed; for more
details, see Chap. 9. For example,

Fig. 4.2 Network reification for a temporal-causal network with in the upper, blue plane reification
states HY for the speed factor of base state Y,WXi ;Y for the weights of the connections from Xi to Y,
Cj,Y for the basic combination function weights of Y, and Pi,j,Y for the parameter values of these
basic combination functions. The downward connections from these reification states to state Y in
the base network (in the lower, pink plane) indicate their special causal effect on Y
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bcf1ð::Þ ¼ sumð::Þ;
bcf2ð::Þ ¼ ssumkð::Þ
bcf3ð::Þ ¼ alogisticr;sð::Þ

For a given state Y, each of these selected basic combination functions bcfj(..)
gets a weight cj,Y assigned which is represented by reification state Cj,Y. Moreover,
each basic combination function bcfj(..) is assumed to have two parameters for each
state: p1,j,Y, p2,j,Y. These combination function parameters p1,1,Y, p2,1,Y, …, p1,m,Y,
p2,m,Y in the m selected combination functions can also be explicitly represented by
parameter reification states

P1;1;Y ;P2;1;Y ; . . .;P1;m;Y ;P2;m;Y

so that they also can become adaptive. Their values are considered as the first
arguments in bcfj(..), and also included as arguments in cY(…). Note that for
applications, often more informative names are used for these parameters pi,j,Y and
their reification states Pi,j,Y; for example, reification state HWsrss ;psa

in Fig. 4.3 for the
reified speed factor of the connection adaptation, and reification state MWsrss;psa

for
the persistence parameter l for the Hebbian learning; this will be explained in more
detail in Sect. 4.4.

psa

Wsrss,psa

srss

HWsrss,psa

TpsaTsrss

sss

MWsrss,psa
Second
reification 
level

First
reification 
level

Base
level

bss

Fig. 4.3 Overview of the reified network architecture for plasticity and metaplasticity with base
level (lower plane, pink), first reification level (middle plane, blue) and second reification level
(upper plane, purple), and upward causal connections (blue) and downward causal connections
(red) defining interlevel relations. The downward causal connections from the two T-states affect
the excitability of the (presynaptic and postsynaptic) states srss and psa. The downward causal
connections from the H-state and M-state affect the adaptation speed and the persistence factor of
the connection weight reification state Wsrss;psa
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So, in the base network for each state Y combination function weights c are
assumed: numbers c1,Y, c2,Y, … � 0 that may change over time such that the
combination function cY(.) for Y is expressed by:

cY ðt; p1;1;Y ; p2;1;Y ;...; p1;m;Y ; p2;m;Y ;V1; . . .;VkÞ

¼ c1;YðtÞbcf1 p1;1;Y ; p2;1;Y ;V1; . . .;Vk
� �þ � � � þ cm;Y ðtÞ bcfmðp1;m;Y ; p2;m;Y ;V1; . . .;VkÞ

c1;Y ðtÞþ � � � þ cm;YðtÞ
ð4:5Þ

The basic combination function weights ci,Y(..) are represented by the reification
states Ci,Y for Y. This describes that for Y a weighted average of basic combination
functions is used. Note that, if exactly one of the Ci,Y(t) is nonzero, just one basic
combination function is selected for cY(.). This approach makes it possible, for
example, to gradually switch from one combination function bcfi(..) to another one
bcfj(..) over time by decreasing the value of Ci,Y(t) and increasing the value of
Cj,Y(t).

4.3.2 The Universal Combination Function and Universal
Difference Equation for Reified Networks

In Chap. 3, Sect. 3.5 a universal combination function c*Y(..) has been found for
any base state Y in the reified network. In cases of full reification, it has no
parameters for network characteristics, only variables. Therefore it can be used in
the same form for every base state as shown below; for a more detailed derivation,
also see Chap. 10:

c�YðH;C1; . . .;Cm;P1;1;P2;1; . . .;P1;m;P2;m;W1; . . .;Wk;V1; . . .;Vk;VÞ

¼ H
C1 bcf1 P1;1;Y ;P2;1;Y ;W1V1; . . .;WkVk

� �þ � � � þCm bcfmðP1;m;Y ;P2;m;Y ;W1V1; . . .;WkVkÞ
C1 þ � � � þCm

þð1� HÞV

¼ H
C1 bcf1 P1;1;Y ;P2;1;Y ;W1V1; . . .;WkVk

� �þ � � � þCm bcfmðP1;m;Y ;P2;m;Y ;W1V1; . . .;WkVkÞ
C1 þ � � � þCm

� V

� �
þV

ð4:6Þ

Here

• H refers to the speed factor reification HY(t)
• Ci to the combination function weight reification Ci,Y(t)
• Pi,j to the parameter reification value Pi,j,Y(t) of parameter i = 1, 2 of basic

combination function j = 1, …, m
• Wi to the connection weight reification WXi;Y tð Þ
• Vi to the state value Xi(t) of base state Xi

• V to the state value Y(t) of base state Y.

4.3 Addressing Network Adaptation by Network Reification 107



This combination function c*Y(..) in (4.4) makes that the dynamics of any base
state Y within the reified network is described by the following universal difference
equation in temporal-causal network format:

YðtþDtÞ ¼YðtÞþ c�YðHYðtÞ;C1;YðtÞ; . . .;Cm;Y ðtÞ;
�

P1;1;YðtÞ;P2;1;YðtÞ; . . .;P1;m;YðtÞ;
P2;m;YðtÞ;WX1;YðtÞ; . . .;WXk ;Y ðtÞ;
X1ðtÞ; . . .;XkðtÞ; YðtÞÞ � Y tð Þ�Dt

ð4:7Þ

For more details, see Chap. 3, Sect. 3.5 and Chap. 10.
Structures added by the reification process are not reified themselves. However,

the structure of the reified network can also be reified as another step: providing
what is then called second-order reification. In the next section it is explored how
such second-order reification can be done and how it can be used to model
second-order adaptation for adaptive first-order adaptation principles.

4.4 Using Multilevel Network Reification
for Higher-Order Adaptive Network Models

In this section, the multilevel reification architecture is introduced that allows
modeling of networks with arbitrary orders of adaptation. In this architecture, the
base network has its own internal dynamics, but it also evolves through one or more
adaptation principles (called first-order adaptation principles). Moreover, these
first-order adaptation principles themselves can change based on other adaptation
principles (called second-order adaptation principles). So the architecture offers
n reification levels for an arbitrary n where on reification level i adaptation prin-
ciples are defined for ith-order adaptation. In this chapter, it is shown how the
reified temporal-causal network modeling approach can be used to model important
developments in empirical science, in particular concerning plasticity and meta-
plasticity. These are important notions in state of the art research on Cognitive
Neuroscience, introduced not from a computational modeling perspective but by
purely empirical researchers to clarify what was found empirically. This section
shows how these notions can be connected to the reified temporal-network mod-
eling approach described in the current chapter. This particular example shows the
essential elements but is kept relatively simple; it can easily be extended by adding
more states and connections.
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4.4.1 Using Multilevel Network Reification for Plasticity
and Metaplasticity from Cognitive Neuroscience

Mental networks equipped with a Hebbian learning mechanism (Hebb 1949) are
able to adapt connection weights over time and learn or form memories in this way.
Within Neuroscience this is usually called plasticity. In some circumstances it is
better to learn (and change) fast, but in other circumstances, it is better to stay stable
and persist what has been learnt in the past. To control this, by humans a type of
(higher-order) adaptation called metaplasticity is used. It has become an important
focus of study in Cognitive Neuroscience. In literature such as Abraham and Bear
(1996), Chandra and Barkai (2018), Magerl et al. (2018), Parsons (2018), Robinson
et al. (2016), Sehgal et al. (2013), Schmidt et al. (2013), Sjöström et al. (2008)
various studies are reported which show how the adaptation of synapses (as
described, for example, by Hebbian learning), is modulated by suppressing the
adaptation process or amplifying it. Among the reported factors affecting synaptic
plasticity are stimulus exposure, activation, previous experiences, and stress, which
can accelerate or decelerate learning, or induce temporarily enhanced excitability of
neurons which in turn positively affects learning; e.g., Chandra and Barkai (2018),
Oh et al. (2003).

The reified network modeling approach was applied to a case involving both
plasticity and metaplasticity, acquired from the literature mentioned above.
A network picture of the designed reified network model for plasticity and meta-
plasticity is shown in Fig. 4.3. Table 4.2 displays the explanations of the states.
Section 4.4.2 shows the complete specification. Here the plasticity of the response
connection from srss to psa is considered, modeled by Hebbian learning. Note that
the two T-states and the M-state are combination function parameter states here,
respectively for excitability threshold s of srss and psa and for persistence parameter
l for the Hebbian learning of the connection from srss to psa. The alternative path
via the belief state bss supports this learning by contributing to the activation of psa,
thus relating to the original formulation in Hebb (1949):

Table 4.2 State names for the plasticity and metaplasticity model with their explanations

State nr State name Explanation Level
X1 sss Sensor state for stimulus s

Base  
level

X2 srss Sensory representation state for stimulus s
X3 bss Belief state for stimulus s
X4 psa Preparation state for response a
X5 Wsrss,psa Reified representation state for connection weight ωsrss,psa First  

reification  
level

X6 Tsrss Reified representation state for threshold parameter τsrss of base state srss
X7 Tpsa Reified representation state for threshold  parameter τpsa of base state psa

X8 HWsrss,psa
Reified representation state for speed factor ηWsrss,psa for reified repre-
sentation state Wsrss,psa

Second  
reification  
levelX9 MWsrss,psa

Reified representation state for persistence factor parameter μWsrss,psa for 
reified representation state Wsrss,psa
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When an axon of cell A is near enough to excite B and repeatedly or persistently takes part
in firing it, some growth process or metabolic change takes place in one or both cells such
that A’s efficiency, as one of the cells firing B, is increased. (Hebb 1949, p. 62)

In principle, this will start to work when the external stimulus s is sensed through
sensor state sss. However, as discussed above, whether or not and to which extent
learning actually takes place is controlled by a form of metaplasticity; this also
relates to factors such as excitability characteristics of the involved states. To model
metaplasticity, the model includes a second reification level with states HWsrss ;psa

representing the speed of the learning (learning rate) of xsrss;psa , and MWsrss ;psa

representing the persistence lWsrss ;psa
of the connection weight xsrss;psa . They have

dynamic values depending on the other states. For example, if at some point in time
the value of HWsrss ;psa

is 0, no learning will take place, and ifMWsrss ;psa
has value 0, no

learnt effects will persist; the value of these second-order reification states depend
on activation of the presynaptic and postsynaptic states srss and psa, also see
Robinson et al. (2016):

Adaptation accelerates with increasing stimulus exposure. (Robinson et al. 2016, p. 2)

Note that a double level subscript notation for second-order reification states
such as HWsrss ;psa

should be read as HY for a state Y at the first reification level, in this
case, Y ¼ Wsrss;psa . By substituting Wsrss;psa for Y in HY, this results in the double
level subscript notation HWsrss ;psa

; note that here for the sake of simplicity the
subscripts in srss and psa are considered to be at the same subscript level as srs and
ps. So, the subscript of H is Wsrss;psa and this subscript itself has subscripts srss and
psa; the notation should be interpreted as HðWsrss ;psa Þ. In this way, the number of
reification levels is reflected in the number of subscript levels. This applies to all
states at the second reification level, so, for example, also to MWsrss ;psa

. Up till now
no cases of network adaptation of order higher than 2 have been addressed; how-
ever, see Chaps. 7 and 8 where more than 2 reification levels show up, and more
subscript levels accordingly. From a modeling perspective there is nothing against
adding a third reification level for the characteristics that define the second-order
adaptation principles by the dynamics of the second-order reification states, for
example, adding third-order reification states for their speed factors or their com-
bination functions or the parameters of these functions.

To address dynamic levels of excitability of base states, first-order reification
states Tsrss and Tpsa have been included that model the intrinsic excitability of the
presynaptic and postsynaptic state srss and psa, respectively, by the value of the
thresholds ssrss and spsa of their logistic sum combination functions; also see
Chandra and Barkai (2018):
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Learning-related cellular changes can be divided into two general groups: modifications
that occur at synapses and modifications in the intrinsic properties of the neurons. While it
is commonly agreed that changes in strength of connections between neurons in the rele-
vant networks underlie memory storage, ample evidence suggests that modifications in
intrinsic neuronal properties may also account for learning related behavioral changes.
Long-lasting modifications in intrinsic excitability are manifested in changes in the neu-
ron’s response to a given extrinsic current (generated by synaptic activity or applied via the
recording electrode). (Chandra and Barkai 2018, p. 30)

For most of the states, the combination function used below is the alogisticr,s(..)
function. The only exceptions are the sensor state sss which uses the Euclidean
combination function eucl1,k(..) and Wsrss;psa which uses the Hebbian combination
function hebblWsrss ;psa

(..).

4.4.2 Role Matrices Covering Plasticity and Metaplasticity

The multilevel reified network model described in Sect. 4.4.1 by a conceptual
graphical representation, is described in the current section by a conceptual role
matrices representation. The role matrix mb specifies for this network model on
each row for a given state which states at the same or a lower level have outgoing
connections to that state. This plays the role of base connectivity. This matrix
contains the information depicted in Fig. 4.3 by upward (blue) or leveled (black)
arrows, and includes for each state a numbering of the incoming base connections
(the 1–4 in the top row), and for some of the states a connection from the state itself.
The latter applies to all (first- and second-order) reification states, as can be seen in
mb. For example, in the third row, it is indicated that state X3 (=bss) only has one
incoming base connection, from state X2 (=srss). As another example, the fifth row
indicates that state X5 (=Wsrss;psa ) has incoming base connections from X2 (=srss),
X4 (=psa), X5 (=Wsrss;psa ) itself, and in that order. This order is important as the
Hebbian combination function hebbl(.) used is not symmetric in its arguments.
Note that the second column with more informative state names in each of the role
matrices depicted in Box 4.1 is not part of the specification but has just been added
for human understanding.
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Box 4.1 Role matrices for the second-order reified network for plasticity and
metaplasticity

mb base 
connectivity 1 2 3 4

X1 sss X1
X2 srss X 1
X3 bss X 2

X4 psa X 2 X 3

X5 Wsrss,psa X 2 X 4 X 5

X6 Tsrss X 2 X 4 X 5 X 6

X7 Tpsa X 2 X 4 X 5 X 7

X8 HWsrss,psa X 2 X 4 X 5 X 8

X9 MWsrss,psa X 2 X 4 X 5 X 9

mcfw combination 
function weights 1 2 3

eucl alogistic hebb

X1 sss 1
X2 srss 1
X3 bss 1
X4 psa 1
X5 Wsrss,psa 1
X6 Tsrss 1
X7 Tpsa 1
X8 HWsrss,psa 1
X9 MWsrss,psa 1

ms speed factors 1
X1 sss 0.5
X2 srss 0.5
X3 bss 0.2
X4 psa 0.5
X5 Wsrss,psa X8

X6 Tsrss 0.3
X7 Tpsa 0.3
X8 HWsrss,psa 0.5
X9 MWsrss,psa 0.1

mcw connection 
weights 1 2 3 4

X1 sss 1
X2 srss 1
X3 bss 1
X4 psa X 5 1
X5 Wsrss,psa 1 1 1
X6 Tsrss -0.4 -0.4 1 1
X7 Tpsa -0.4 -0.4 1 1
X8 HWsrss,psa 1 1 -0.1 1
X9 MWsrss,psa 1 1 1 1

function
mcfp

parameter

1 2 3
eucl alogistic hebb

1 2 1 2 1 2
n

X1 sss 1 1
X2 srss 5 X 6
X3 bss 5 0.2
X4 psa 5 X 7

X5 Wsrss,psa X 9

X6 Tsrss 5 0.7
X7 Tpsa 5 0.7
X8 HWsrss,psa 5 1
X9 MWsrss,psa 5 1

In a similar way the four types of role matrices for non-base roles (showing
either values or reification states to play that role; in the later case the downward
arrows in Fig. 4.3 are defined here), were defined; see Box 4.1: role matrices mcw
for connection weights, ms for speed factors, mcfw for combination function
weights, andmcfp for combination function parameters. As before, within each role
matrix, cell entries in red indicate a reference to the name of another state that as a
form of reification represents in a dynamic manner an adaptive network charac-
teristic, while entries indicating in green indicate fixed values for nonadaptive
characteristics. The red cells represent the downward causal connections from the
reification states in pictures as shown in Fig. 4.3, with their specific roles W, H, C,
P indicated by the type of role matrix. The type of role matrix in which they are
represented actually defines the roles of the reification states so that there is no need
to computationally use information from the names W, H, C, P of them; they may
have any own given names.
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For example, in Box 4.1 the name X5 in the red cell row-column (4, 1) in role
matrix mcw indicates that the value of the connection weight from srss to psa is the
value of state X5. In contrast, the 1 in green cell (5, 1) of mcw indicates the static
value of the connection weight from X2 (=srss) to X5 (=Wsrss;psa ). Similarly, role
matrix ms indicates (in red) that X8 represents the adaptive speed factor of X5, and
(in green) that the speed factors of all other states have fixed values.

For a given application a limited fixed sequence of combination functions is
specified by mcf = [1 2 3], where the numbers 1, 2, 3 refer to the numbering in the
function library which currently contains 35 combination functions, the first three
being eucln,k(..), alogisticr,s(..), hebbl(..). In Box 4.1 the role matrices mcfw and
mcfp are shown for combination function weights and parameters, respectively.
Here the matrix mcfp is a 3D matrix with first dimension for the states, second
dimension for the two combination function parameters and third dimension for the
combination functions.

4.5 Simulation for a Second-Order Reified Network
Model for Plasticity and Metaplasticity

Following what is reported in the literature on metaplasticity, a number of simu-
lation experiments have been performed. In particular, a scenario is shown here in
which the focus was on the effect of activation of the postsynaptic state psa on
plasticity; the effect of the presynaptic state srss on reification states was blocked
(weights of upward links from srss were set 0). In Fig. 4.4 the simulation results are
shown. For settings, see the specification in Sect. 4.4.2, Box 4.1. The upper graph
shows the activation levels of the base states and how the weight of the connection
from srss to psa is learnt. Here the activation levels and the exact shape of the
learning curve also depend on controlling factors shown in the lower graph in
Fig. 4.4. As can be seen there, following exposure to stimulus s, the threshold
values Tsrss and Tpsa for the activation of srss and psa are decreasing to low levels.
This substantially increases the excitability of srss and psa conform (Chandra and
Barkai 2018) and therefore gives a boost to the activation levels of these base states,
which in turn strengthens the Hebbian learning. Also, it is shown that following
exposure to stimulus s the learning speed HWsrss ;psa

strongly increases, conform
(Robinson et al. 2016). These controlling measures together result in a quite steep
increase of the connection weight reification state. However, after the learnt level of
the weight has become high, the thresholds increase again, and the learning speed
decreases again. This makes the excitability of srss and psa lower and stops the
boosts on learning; this has a positive effect on stabilising the situation, in accor-
dance with what, e.g., in Sjöström et al. (2008) is called ‘The Plasticity Versus
Stability Conundrum’ (p. 773).
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4.6 On the Added Complexity for Higher-Order Network
Reification

Note that, as for any dynamical system, by adding adaptivity to a network always
complexity is added. In this section, it is discussed how complexity of a network
increases when reification is applied. The added complexity for first-order network
reification was addressed in Chap. 3, Sect. 3.9. The outcome will be briefly sum-
marized and next, the step to higher-order reification is made. To start with the
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Fig. 4.4 Upper graph: dynamics of base states and the adaptive connection weight represented by
Wsrss;psa . Lower graph: dynamics of the reification states including the first-order reification state
Wsrss;psa for the adaptive connection weight, and Tsrss and Tpsa for the activation threshold for the
presynaptic and postsynaptic states srss and psa, and the second-order reification states HWsrss ;psa

and MWsrss;psa
for the adaptation speed and persistence factor of the connection weight reification

state Wsrss;psa
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outcome, network reification will increase complexity, but this will at most be
quadratic in the number of nodes N and linear in the number of connections M of
the original network. More specifically, if m the number of basic combination
functions considered, then the number of nodes in the reified network is at most
(2 + m + N)N. If not all connections are used but only a number M of them, the
outcome is (2 + m)N + M. This is linear in the number of nodes and connections.
The number of connections in the reified network is (m + 1)N + 2M. Again this is
linear in the number of nodes and connections.

If this analysis is applied in an iterative manner for second-order network
reification, then the increase in complexity is still polynomial: at most in the fourth
power of the number of nodes:

N2� �2¼ N4 ð4:8Þ

Can this iteration still be continued further, thus obtaining nth-order reification
for any n? Yes, theoretically there is no end in this. But also practically, for
example, in the case used as illustration in the current chapter, the parameter mTXXi ;Xj

for the norm of the average connection weight for the tipping point adaptation used
as characteristic at the second reification level still could be made adaptive (e.g.,
related to how busy someone is) and reified at a third reification level. For
third-order reification, the increase in complexity is still polynomial: at most in the
order of

N2� �2� 	2
¼ N8 ð4:9Þ

If n reification levels are added, then it is in the order of

Nð2nÞ ð4:10Þ

which is still polynomial in N, but double exponential in n. The latter may suggest
limiting the number of reification levels in practical applications to just a few, or,
alternatively, in each reification step add only a few new reification states: for each
step reification can be done in a partial manner as well. For example, if only speed
factors are reified, the number of states will only increase in a linear way: one extra
state for each existing state. Recall the double negative exponential pattern of hits in
the order of

e35:19 e
�0:8684n ð4:11Þ

discussed in Chap. 1, Sect. 1.3. In the current literature, an adaptation of order
higher than 2 is extremely rare and of order higher than 3 practically absent. This
supports the idea that for now adaptation of order >3 is not considered interesting
enough to be addressed. As shown above, for adaptation of order 3 the added
complexity is in the order of an 8th degree polynomial in n, and for order 2 a 4th
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degree polynomial. In this context, note Chap. 10, Sect. 10.7 pointing out how
efficient simulation of large-scale reified networks of thousands or even millions of
states can be achieved by applying a form of compilation.

4.7 Discussion

The multilevel network reification architecture described here has advantages
similar to those found for reification in modeling and programming languages in
other areas of AI and Computer Science; e.g., Bowen and Kowalski (1982), Demers
and Malenfant (1995), Galton (2006), Hofstadter (1979), Sterling and Shapiro
(1996), Sterling and Beer (1989), Weyhrauch (1980). Some parts of this chapter
were adopted from Treur (2018). A reified network enables to model dynamics of
the original network by dynamics within the reified network, thus representing an
adaptive network by a non-adaptive network. Network reification provides a unified
manner of modelling adaptation principles, and allows comparison of such prin-
ciples across different domains, as has been illustrated in Chap. 3. In the current
chapter it was shown how a multilevel reified network architecture enables a
structured and transparent manner to model network adaptation of any order,
illustrated for second-order adaptive networks.

In this chapter, the introduced modeling environment for reified temporal-causal
networks was applied to model a second-order adaptive Mental Network showing
plasticity and metaplasticity as known from the empirical neuroscientific literature.
Although some specific computational models for metaplasticity have been put
forward with interesting perspectives for artificial neural networks, for example in
Marcano-Cedeno et al. (2011), Andina et al. (2007, 2009), Fombellida et al. (2017),
the modeling environment proposed here provides a more general architecture.
Applications may extend well beyond the neuro-inspired area (as will be shown in
Chap. 6 for a second-order adaptive Social Network).

The causal modeling area has a long history in AI; e.g., Kuipers and Kassirer
(1983), Kuipers (1984). The current chapter can be considered a new branch in this
causal modeling area. It adds dynamics to causal models, making them temporal,
but the main contribution in the current chapter is that it adds a way to specify
(multi-order) adaptivity in causal models, thereby conceptually using ideas on
meta-level architectures that also have a long history in AI; e.g., Weyhrauch (1980),
Bowen and Kowalski (1982), Sterling and Beer (1989). So the modeling approach
connects two different areas with a long tradition in AI, thereby strongly extending
the applicability of causal modeling to dynamic and adaptive notions such as
plasticity and metaplasticity of any order, which otherwise are out of reach of causal
modeling.

In the modeling approach, combination functions play a crucial role. They are
declarative mathematical functions relating real numbers to real numbers. The
functionality of an overall reified network is determined mainly by the choice of
these functions and their use within a reified network architecture. In this sense,
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they are the powerful building blocks that enable to model in an easy manner
dynamic processes which are adaptive of any order.

This construction can be continued to obtain a network architecture which is
adaptive up to any order n. In Chap. 1, Sect. 1.3 it was discussed in how far
adaptation principles of order 3 or higher are considered to be useful in the current
literature, and a double negative exponential pattern was found for the number of
hits in Google Scholar against the order of adaptation. However, in Chap. 7 an
example network for evolutionary processes will be described of order higher than
2, and in Chap. 8 one or two inspired by ideas from Hofstadter (1979, 2007).

In an nth-order reified network there still will be network structures introduced in
the last step from n − 1 to n that have no reification within the nth-order reified
network. From a theoretical perspective, the construction can be repeated (count-
able) infinitely many times, for all natural numbers n; then x-order reification is
obtained, where x is the ordinal for the natural numbers. This is theoretically
well-defined as a mathematical structure. All network structures in this x-order
reified network are reified within the network itself, so it is closed under reification.
Whether or not such an x-order construction has a useful application in practice, or
can be used to explore theoretical research questions is still an open question,
another subject for future research.
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