1,249 research outputs found

    Sex differences in mathematics and reading achievement are inversely related: within- and across-nation assessment of 10 years of PISA data

    Get PDF
    We analyzed one decade of data collected by the Programme for International Student Assessment (PISA), including the mathematics and reading performance of nearly 1.5 million 15 year olds in 75 countries. Across nations, boys scored higher than girls in mathematics, but lower than girls in reading. The sex difference in reading was three times as large as in mathematics. There was considerable variation in the extent of the sex differences between nations. There are countries without a sex difference in mathematics performance, and in some countries girls scored higher than boys. Boys scored lower in reading in all nations in all four PISA assessments (2000, 2003, 2006, 2009). Contrary to several previous studies, we found no evidence that the sex differences were related to nations’ gender equality indicators. Further, paradoxically, sex differences in mathematics were consistently and strongly inversely correlated with sex differences in reading: Countries with a smaller sex difference in mathematics had a larger sex difference in reading and vice versa. We demonstrate that this was not merely a between-nation, but also a within-nation effect. This effect is related to relative changes in these sex differences across the performance continuum: We did not find a sex difference in mathematics among the lowest performing students, but this is where the sex difference in reading was largest. In contrast, the sex difference in mathematics was largest among the higher performing students, and this is where the sex difference in reading was smallest. The implication is that if policy makers decide that changes in these sex differences are desired, different approaches will be needed to achieve this for reading and mathematics. Interventions that focus on high-achieving girls in mathematics and on low achieving boys in reading are likely to yield the strongest educational benefits

    Recruitment, augmentation and apoptosis of rat osteoclasts in 1,25-(OH)2D3 response to short-term treatment with 1,25-dihydroxyvitamin D3in vivo

    Get PDF
    Background Although much is known about the regulation of osteoclast (OC) formation and activity, little is known about OC senescence. In particular, the fate of of OC seen after 1,25-(OH)2D3 administration in vivo is unclear. There is evidence that the normal fate of OC is to undergo apoptosis (programmed cell death). We have investigated the effect of short-term application of high dose 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) on OC apoptosis in an experimental rat model. Methods OC recruitment, augmentation and apoptosis was visualised and quantitated by staining histochemically for tartrate resistant acid phosphatase (TRAP), double staining for TRAP/ED1 or TRAP/DAPI, in situ DNA fragmentation end labelling and histomorphometric analysis. Results Short-term treatment with high-dose 1,25-(OH)2D3 increased the recruitment of OC precursors in the bone marrow resulting in a short-lived increase in OC numbers. This was rapidly followed by an increase in the number of apoptotic OC and their subsequent removal. The response of OC to 1,25-(OH)2D3 treatment was dose and site dependent; higher doses producing stronger, more rapid responses and the response in the tibiae being consistently stronger and more rapid than in the vertebrae. Conclusions This study demonstrates that (1) after recruitment, OC are removed from the resorption site by apoptosis (2) the combined use of TRAP and ED1 can be used to identify OC and their precursors in vivo (3) double staining for TRAP and DAPI or in situ DNA fragmentation end labelling can be used to identify apoptotic OC in vivo

    Attachment styles and personal growth following romantic breakups: The mediating roles of distress, rumination, and tendency to rebound

    Get PDF
    © 2013 Marshall et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.This article has been made available through the Brunel Open Access Publishing Fund.The purpose of this research was to examine the associations of attachment anxiety and avoidance with personal growth following relationship dissolution, and to test breakup distress, rumination, and tendency to rebound with new partners as mediators of these associations. Study 1 (N = 411) and Study 2 (N = 465) measured attachment style, breakup distress, and personal growth; Study 2 additionally measured ruminative reflection, brooding, and proclivity to rebound with new partners. Structural equation modelling revealed in both studies that anxiety was indirectly associated with greater personal growth through heightened breakup distress, whereas avoidance was indirectly associated with lower personal growth through inhibited breakup distress. Study 2 further showed that the positive association of breakup distress with personal growth was accounted for by enhanced reflection and brooding, and that anxious individuals’ greater personal growth was also explained by their proclivity to rebound. These findings suggest that anxious individuals’ hyperactivated breakup distress may act as a catalyst for personal growth by promoting the cognitive processing of breakup-related thoughts and emotions, whereas avoidant individuals’ deactivated distress may inhibit personal growth by suppressing this cognitive work

    A novel PKC activating molecule promotes neuroblast differentiation and delivery of newborn neurons in brain injuries

    Get PDF
    Neural stem cells are activated within neurogenic niches in response to brain injuries. This results in the production of neuroblasts, which unsuccessfully attempt to migrate toward the damaged tissue. Injuries constitute a gliogenic/non-neurogenic niche generated by the presence of anti-neurogenic signals, which impair neuronal differentiation and migration. Kinases of the protein kinase C (PKC) family mediate the release of growth factors that participate in different steps of the neurogenic process, particularly, novel PKC isozymes facilitate the release of the neurogenic growth factor neuregulin. We have demonstrated herein that a plant derived diterpene, (EOF2; CAS number 2230806-06-9), with the capacity to activate PKC facilitates the release of neuregulin 1, and promotes neuroblasts differentiation and survival in cultures of subventricular zone (SVZ) isolated cells in a novel PKC dependent manner. Local infusion of this compound in mechanical cortical injuries induces neuroblast enrichment within the perilesional area, and noninvasive intranasal administration of EOF2 promotes migration of neuroblasts from the SVZ towards the injury, allowing their survival and differentiation into mature neurons, being some of them cholinergic and GABAergic. Our results elucidate the mechanism of EOF2 promoting neurogenesis in injuries and highlight the role of novel PKC isozymes as targets in brain injury regeneration

    Histone deacetylase adaptation in single ventricle heart disease and a young animal model of right ventricular hypertrophy.

    Get PDF
    BackgroundHistone deacetylase (HDAC) inhibitors are promising therapeutics for various forms of cardiac diseases. The purpose of this study was to assess cardiac HDAC catalytic activity and expression in children with single ventricle (SV) heart disease of right ventricular morphology, as well as in a rodent model of right ventricular hypertrophy (RVH).MethodsHomogenates of right ventricle (RV) explants from non-failing controls and children born with a SV were assayed for HDAC catalytic activity and HDAC isoform expression. Postnatal 1-day-old rat pups were placed in hypoxic conditions, and echocardiographic analysis, gene expression, HDAC catalytic activity, and isoform expression studies of the RV were performed.ResultsClass I, IIa, and IIb HDAC catalytic activity and protein expression were elevated in the hearts of children born with a SV. Hypoxic neonatal rats demonstrated RVH, abnormal gene expression, elevated class I and class IIb HDAC catalytic activity, and protein expression in the RV compared with those in the control.ConclusionsThese data suggest that myocardial HDAC adaptations occur in the SV heart and could represent a novel therapeutic target. Although further characterization of the hypoxic neonatal rat is needed, this animal model may be suitable for preclinical investigations of pediatric RV disease and could serve as a useful model for future mechanistic studies

    Effect of combined treatment with alendronate and calcitriol on femoral neck strength in osteopenic rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hip fracture is associated with pronounced morbidity and excess mortality in elderly women with postmenopausal osteoporosis. Many drugs have been developed to treat osteoporosis and to reduce the risk of osteoporotic fractures. We investigated the effects of combined alendronate and vitamin D<sub>3 </sub>treatment on bone mass and fracture load at the femoral neck in ovariectomized (OVX) rats, and evaluated the relationship between bone mass parameters and femoral neck strength.</p> <p>Methods</p> <p>Thirty 12-week-old female rats underwent either a sham-operation (n = 6) or OVX (n = 24). Twenty weeks later, OVX rats were further divided into four groups and received daily doses of either saline alone, 0.1 mg/kg alendronate, 0.1 μg/kg calcitriol, or a combination of both two drugs by continuous infusion via Alzet mini-osmotic pumps. The sham-control group received saline alone. After 12 weeks of treatment, femoral necks were examined using peripheral quantitative computed tomography (pQCT) densitometry and mechanical testing.</p> <p>Results</p> <p>Saline-treated OVX rats showed significant decreases in total bone mineral content (BMC) (by 28.1%), total bone mineral density (BMD) (by 9.5%), cortical BMC (by 26.3%), cancellous BMC (by 66.3%), cancellous BMD (by 29.0%) and total cross-sectional bone area (by 30.4%) compared with the sham-control group. The combined alendronate and calcitriol treatments improved bone loss owing to estrogen deficiency. On mechanical testing, although OVX significantly reduced bone strength of the femoral neck (by 29.3%) compared with the sham-control group, only the combined treatment significantly improved the fracture load at the femoral neck in OVX rats to the level of the sham-controls. The correlation of total BMC to fracture load was significant, but that of total BMD was not.</p> <p>Conclusion</p> <p>Our results showed that the combined treatment with alendronate and calcitriol significantly improved bone fragility of the femoral neck in OVX osteopenic rats.</p

    Double–blind control of the data manager doesn't have any impact on data entry reliability and should be considered as an avoidable cost

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Database systems have been developed to store data from large medical trials and survey studies. However, a reliable data storage system does not guarantee data entering reliability.</p> <p>We aimed to evaluate if double-blind control of the data manager might have any effect on data-reliability. Our secondary aim was to assess the influence of the inserting position in the insertion-sheet on data-entry accuracy and the effectiveness of electronic controls in identifying data-entering mistakes.</p> <p>Methods</p> <p>A cross-sectional survey and single data-manager data entry.</p> <p>Data from PACMeR_02 survey, which had been conducted within a framework of the SESy-Europe project (PACMeR_01.4), were used as substrate for this study. We analyzed the electronic storage of 6446 medical charts. We structured data insertion in four sequential phases. After each phase, the data stored in the database were tested in order to detect unreliable entries through both computerized and manual random control. Control was provided in a double blind fashion.</p> <p>Results</p> <p>Double-blind control of the data manager didn't improve data entry reliability. Entries near the end of the insertion sheet were correlated with a larger number of mistakes. Data entry monitoring by electronic-control was statistically more effective than hand-searching of randomly selected medical records.</p> <p>Conclusion</p> <p>Double-blind control of the data manager should be considered an avoidable cost. Electronic-control for monitoring of data-entry reliability is suggested.</p

    Relation of mitral valve morphology and motion to mitral regurgitation severity in patients with mitral valve prolapse

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mitral valve thickness is used as a criterion to distinguish the classical from the non-classical form of mitral valve prolapse (MVP). Classical form of MVP has been associated with higher risk of mitral regurgitation (MR) and concomitant complications. We sought to determine the relation of mitral valve morphology and motion to mitral regurgitation severity in patients with MVP.</p> <p>Methods</p> <p>We prospectively analyzed transthoracic echocardiograms of 38 consecutive patients with MVP and various degrees of MR. In the parasternal long-axis view, leaflets length, diastolic leaflet thickness, prolapsing depth, billowing area and non-coaptation distance between both leaflets were measured.</p> <p>Results</p> <p>Twenty patients (53%) and 18 patients (47%) were identified as having moderate to severe and mild MR respectively (ERO = 45 ± 27 mm<sup>2 </sup>vs. 5 ± 7 mm<sup>2</sup>, p < 0.001). Diastolic leaflet thickness was similar in both groups (5.5 ± 0.9 mm vs. 5.3 ± 1 mm, p = 0.57). On multivariate analysis, the non-coaptation distance (OR 7.9 per 1 mm increase; 95% CI 1.72-37.2) was associated with significant MR. Thick mitral valve leaflet as traditionally reported (≥ 5 mm) was not associated with significant MR (OR 0.9; 95% CI 0.2-3.4).</p> <p>Conclusions</p> <p>In patients with MVP, thick mitral leaflet is not associated with significant MR. Leaflet thickness is probably not as important in risk stratification as previously reported in patients with MVP. Other anatomical and geometrical features of the mitral valve apparatus area appear to be much more closely related to MR severity.</p

    Characterizing low affinity epibatidine binding to α4β2 nicotinic acetylcholine receptors with ligand depletion and nonspecific binding

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Along with high affinity binding of epibatidine (<it>K</it><sub>d1</sub>≈10 pM) to α4β2 nicotinic acetylcholine receptor (nAChR), low affinity binding of epibatidine (<it>K</it><sub>d2</sub>≈1-10 nM) to an independent binding site has been reported. Studying this low affinity binding is important because it might contribute understanding about the structure and synthesis of α4β2 nAChR. The binding behavior of epibatidine and α4β2 AChR raises a question about interpreting binding data from two independent sites with ligand depletion and nonspecific binding, both of which can affect equilibrium binding of [<sup>3</sup>H]epibatidine and α4β2 nAChR. If modeled incorrectly, ligand depletion and nonspecific binding lead to inaccurate estimates of binding constants. Fitting total equilibrium binding as a function of total ligand accurately characterizes a single site with ligand depletion and nonspecific binding. The goal of this study was to determine whether this approach is sufficient with two independent high and low affinity sites.</p> <p>Results</p> <p>Computer simulations of binding revealed complexities beyond fitting total binding for characterizing the second, low affinity site of α4β2 nAChR. First, distinguishing low-affinity specific binding from nonspecific binding was a potential problem with saturation data. Varying the maximum concentration of [<sup>3</sup>H]epibatidine, simultaneously fitting independently measured nonspecific binding, and varying α4β2 nAChR concentration were effective remedies. Second, ligand depletion helped identify the low affinity site when nonspecific binding was significant in saturation or competition data, contrary to a common belief that ligand depletion always is detrimental. Third, measuring nonspecific binding without α4β2 nAChR distinguished better between nonspecific binding and low-affinity specific binding under some circumstances of competitive binding than did presuming nonspecific binding to be residual [<sup>3</sup>H]epibatidine binding after adding a large concentration of cold competitor. Fourth, nonspecific binding of a heterologous competitor changed estimates of high and low inhibition constants but did not change the ratio of those estimates.</p> <p>Conclusions</p> <p>Investigating the low affinity site of α4β2 nAChR with equilibrium binding when ligand depletion and nonspecific binding are present likely needs special attention to experimental design and data interpretation beyond fitting total binding data. Manipulation of maximum ligand and receptor concentrations and intentionally increasing ligand depletion are potentially helpful approaches.</p

    Mitral Cells of the Olfactory Bulb Perform Metabolic Sensing and Are Disrupted by Obesity at the Level of the Kv1.3 Ion Channel

    Get PDF
    Sixty-five percent of Americans are over-weight. While the neuroendocrine controls of energy homeostasis are well known, how sensory systems respond to and are impacted by obesity is scantily understood. The main accepted function of the olfactory system is to provide an internal depiction of our external chemical environment, starting from the detection of chemosensory cues. We hypothesized that the system additionally functions to encode internal chemistry via the detection of chemicals that are important indicators of metabolic state. We here uncovered that the olfactory bulb (OB) subserves as an internal sensor of metabolism via insulin-induced modulation of the potassium channel Kv1.3. Using an adult slice preparation of the olfactory bulb, we found that evoked neural activity in Kv1.3-expressing mitral cells is enhanced following acute insulin application. Insulin mediated changes in mitral cell excitability are predominantly due to the modulation of Kv1.3 channels as evidenced by the lack of effect in slices from Kv1.3-null mice. Moreover, a selective Kv1.3 peptide blocker (ShK186) inhibits more than 80% of the outward current in parallel voltage-clamp studies, whereby insulin significantly decreases the peak current magnitude without altering the kinetics of inactivation or deactivation. Mice that were chronically administered insulin using intranasal delivery approaches exhibited either an elevation in basal firing frequency or fired a single cluster of action potentials. Following chronic administration of the hormone, mitral cells were inhibited by application of acute insulin rather than excited. Mice made obese through a diet of ∼32% fat exhibited prominent changes in mitral cell action potential shape and clustering behavior, whereby the subsequent response to acute insulin stimulation was either attenuated or completely absent. Our results implicate an inappropriate neural function of olfactory sensors following exposure to chronic levels of the hormone insulin (diabetes) or increased body weight (obesity)
    corecore