78 research outputs found

    de Branges-Rovnyak spaces: basics and theory

    Full text link
    For SS a contractive analytic operator-valued function on the unit disk D{\mathbb D}, de Branges and Rovnyak associate a Hilbert space of analytic functions H(S){\mathcal H}(S) and related extension space D(S){\mathcal D(S)} consisting of pairs of analytic functions on the unit disk D{\mathbb D}. This survey describes three equivalent formulations (the original geometric de Branges-Rovnyak definition, the Toeplitz operator characterization, and the characterization as a reproducing kernel Hilbert space) of the de Branges-Rovnyak space H(S){\mathcal H}(S), as well as its role as the underlying Hilbert space for the modeling of completely non-isometric Hilbert-space contraction operators. Also examined is the extension of these ideas to handle the modeling of the more general class of completely nonunitary contraction operators, where the more general two-component de Branges-Rovnyak model space D(S){\mathcal D}(S) and associated overlapping spaces play key roles. Connections with other function theory problems and applications are also discussed. More recent applications to a variety of subsequent applications are given in a companion survey article

    Operator theory and function theory in Drury-Arveson space and its quotients

    Full text link
    The Drury-Arveson space Hd2H^2_d, also known as symmetric Fock space or the dd-shift space, is a Hilbert function space that has a natural dd-tuple of operators acting on it, which gives it the structure of a Hilbert module. This survey aims to introduce the Drury-Arveson space, to give a panoramic view of the main operator theoretic and function theoretic aspects of this space, and to describe the universal role that it plays in multivariable operator theory and in Pick interpolation theory.Comment: Final version (to appear in Handbook of Operator Theory); 42 page

    Production of phi mesons at mid-rapidity in sqrt(s_NN) = 200 GeV Au+Au collisions at RHIC

    Get PDF
    We present the first results of meson production in the K^+K^- decay channel from Au+Au collisions at sqrt(s_NN) = 200 GeV as measured at mid-rapidity by the PHENIX detector at RHIC. Precision resonance centroid and width values are extracted as a function of collision centrality. No significant variation from the PDG accepted values is observed. The transverse mass spectra are fitted with a linear exponential function for which the derived inverse slope parameter is seen to be constant as a function of centrality. These data are also fitted by a hydrodynamic model with the result that the freeze-out temperature and the expansion velocity values are consistent with the values previously derived from fitting single hadron inclusive data. As a function of transverse momentum the collisions scaled peripheral.to.central yield ratio RCP for the is comparable to that of pions rather than that of protons. This result lends support to theoretical models which distinguish between baryons and mesons instead of particle mass for explaining the anomalous proton yield.Comment: 326 authors, 24 pages text, 23 figures, 6 tables, RevTeX 4. To be submitted to Physical Review C as a regular article. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Navigating cross-cultural research: methodological and ethical considerations

    Get PDF
    Copyright © 2020 The Authors. The intensifying pace of research based on cross-cultural studies in the social sciences necessitates a discussion of the unique challenges of multi-sited research. Given an increasing demand for social scientists to expand their data collection beyond WEIRD (Western, educated, industrialized, rich and democratic) populations, there is an urgent need for transdisciplinary conversations on the logistical, scientific and ethical considerations inherent to this type of scholarship. As a group of social scientists engaged in cross-cultural research in psychology and anthropology, we hope to guide prospective cross-cultural researchers through some of the complex scientific and ethical challenges involved in such work: (a) study site selection, (b) community involvement and (c) culturally appropriate research methods. We aim to shed light on some of the difficult ethical quandaries of this type of research. Our recommendation emphasizes a community-centred approach, in which the desires of the community regarding research approach and methodology, community involvement, results communication and distribution, and data sharing are held in the highest regard by the researchers. We argue that such considerations are central to scientific rigour and the foundation of the study of human behaviour.Department of Human Behaviour, Ecology and Culture at the Max Planck Institute for Evolutionary Anthropology; French National Research Agency under the Investments for the Future (Investissements d'Avenir) programme (ANR-17-EURE-0010)

    Translating land cover/land use classifications to habitat taxonomies for landscape monitoring: A Mediterranean assessment

    Get PDF
    Periodic monitoring of biodiversity changes at a landscape scale constitutes a key issue for conservation managers. Earth observation (EO) data offer a potential solution, through direct or indirect mapping of species or habitats. Most national and international programs rely on the use of land cover (LC) and/or land use (LU) classification systems. Yet, these are not as clearly relatable to biodiversity in comparison to habitat classifications, and provide less scope for monitoring. While a conversion from LC/LU classification to habitat classification can be of great utility, differences in definitions and criteria have so far limited the establishment of a unified approach for such translation between these two classification systems. Focusing on five Mediterranean NATURA 2000 sites, this paper considers the scope for three of the most commonly used global LC/LU taxonomies—CORINE Land Cover, the Food and Agricultural Organisation (FAO) land cover classification system (LCCS) and the International Geosphere-Biosphere Programme to be translated to habitat taxonomies. Through both quantitative and expert knowledge based qualitative analysis of selected taxonomies, FAO-LCCS turns out to be the best candidate to cope with the complexity of habitat description and provides a framework for EO and in situ data integration for habitat mapping, reducing uncertainties and class overlaps and bridging the gap between LC/LU and habitats domains for landscape monitoring—a major issue for conservation. This study also highlights the need to modify the FAO-LCCS hierarchical class description process to permit the addition of attributes based on class-specific expert knowledge to select multi-temporal (seasonal) EO data and improve classification. An application of LC/LU to habitat mapping is provided for a coastal Natura 2000 site with high classification accuracy as a result

    J/psi production from proton-proton collisions at sqrt(s) = 200 GeV

    Get PDF
    J/psi production has been measured in proton-proton collisions at sqrt(s)= 200 GeV over a wide rapidity and transverse momentum range by the PHENIX experiment at RHIC. Distributions of the rapidity and transverse momentum, along with measurements of the mean transverse momentum and total production cross section are presented and compared to available theoretical calculations. The total J/psi cross section is 3.99 +/- 0.61(stat) +/- 0.58(sys) +/- 0.40(abs) micro barns. The mean transverse momentum is 1.80 +/- 0.23(stat) +/- 0.16(sys) GeV/c.Comment: 326 authors, 6 pages text, 4 figures, 1 table, RevTeX 4. To be submitted to PRL. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Measurement of Single Electron Event Anisotropy in Au+Au Collisions at sqrt(s_NN) = 200 GeV

    Get PDF
    The transverse momentum dependence of the azimuthal anisotropy parameter v_2, the second harmonic of the azimuthal distribution, for electrons at mid-rapidity (|eta| < 0.35) has been measured with the PHENIX detector in Au+Au collisions at sqrt(s_NN) = 200 GeV. The measurement was made with respect to the reaction plane defined at high rapidities (|eta| = 3.1 -- 3.9). From the result we have measured the v_2 of electrons from heavy flavor decay after subtraction of the v_2 of electrons from other sources such as photon conversions and Dalitz decay from light neutral mesons. We observe a non-zero single electron v_2 with a 90% confidence level in the intermediate p_T region.Comment: 330 authors, 11 pages text, RevTeX4, 9 figures, 1 tables. Submitted to Physical Review C. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Systematic Studies of the Centrality and sqrt(s_NN) Dependence of dE_T/deta and dN_ch/deta in Heavy Ion Collisions at Mid-rapidity

    Get PDF
    The PHENIX experiment at RHIC has measured transverse energy and charged particle multiplicity at mid-rapidity in Au+Au collisions at sqrt(s_NN) = 19.6, 130 and 200 GeV as a function of centrality. The presented results are compared to measurements from other RHIC experiments, and experiments at lower energies. The sqrt(s_NN) dependence of dE_T/deta and dN_ch/deta per pair of participants is consistent with logarithmic scaling for the most central events. The centrality dependence of dE_T/deta and dN_ch/deta is similar at all measured incident energies. At RHIC energies the ratio of transverse energy per charged particle was found independent of centrality and growing slowly with sqrt(s_NN). A survey of comparisons between the data and available theoretical models is also presented.Comment: 327 authors, 25 pages text, 19 figures, 17 tables, RevTeX 4. To be submitted to Physical Review C as a regular article. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
    corecore