188 research outputs found

    Adjuvant whole abdominal intensity modulated radiotherapy (IMRT) for high risk stage FIGO III patients with ovarian cancer (OVAR-IMRT-01) – Pilot trial of a phase I/II study: study protocol

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The prognosis for patients with advanced epithelial ovarian cancer remains poor despite aggressive surgical resection and platinum-based chemotherapy. More than 60% of patients will develop recurrent disease, principally intraperitoneal, and die within 5 years. The use of whole abdominal irradiation (WAI) as consolidation therapy would appear to be a logical strategy given its ability to sterilize small tumour volumes. Despite the clinically proven efficacy of whole abdominal irradiation, the use of radiotherapy in ovarian cancer has profoundly decreased mainly due to high treatment-related toxicity. Modern intensity-modulated radiation therapy (IMRT) could allow to spare kidneys, liver, and bone marrow while still adequately covering the peritoneal cavity with a homogenous dose.</p> <p>Methods/Design</p> <p>The OVAR-IMRT-01 study is a single center pilot trial of a phase I/II study. Patients with advanced ovarian cancer stage FIGO III (R1 or R2< 1 cm) after surgical resection and platinum-based chemotherapy will be treated with whole abdomen irradiation as consolidation therapy using intensity modulated radiation therapy (IMRT) to a total dose of 30 Gy in 1.5 Gy fractions. A total of 8 patients will be included in this trial. For treatment planning bone marrow, kidneys, liver, spinal cord, vertebral bodies and pelvic bones are defined as organs at risk. The planning target volume includes the entire peritoneal cavity plus pelvic and para-aortic node regions.</p> <p>Discussion</p> <p>The primary endpoint of the study is the evaluation of the feasibility of intensity-modulated WAI and the evaluation of the study protocol. Secondary endpoint is evaluation of the toxicity of intensity modulated WAI before continuing with the phase I/II study. The aim is to explore the potential of IMRT as a new method for WAI to decrease the dose to kidneys, liver, bone marrow while covering the peritoneal cavity with a homogenous dose, and to implement whole abdominal intensity-modulated radiotherapy into the adjuvant multimodal treatment concept of advanced ovarian cancer FIGO stage III.</p

    Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond

    Get PDF
    We review recent developments in the physics of ultracold atomic and molecular gases in optical lattices. Such systems are nearly perfect realisations of various kinds of Hubbard models, and as such may very well serve to mimic condensed matter phenomena. We show how these systems may be employed as quantum simulators to answer some challenging open questions of condensed matter, and even high energy physics. After a short presentation of the models and the methods of treatment of such systems, we discuss in detail, which challenges of condensed matter physics can be addressed with (i) disordered ultracold lattice gases, (ii) frustrated ultracold gases, (iii) spinor lattice gases, (iv) lattice gases in "artificial" magnetic fields, and, last but not least, (v) quantum information processing in lattice gases. For completeness, also some recent progress related to the above topics with trapped cold gases will be discussed.Comment: Review article. v2: published version, 135 pages, 34 figure

    Phase II study evaluating consolidation whole abdominal intensity-modulated radiotherapy (IMRT) in patients with advanced ovarian cancer stage FIGO III - The OVAR-IMRT-02 Study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The prognosis for patients with advanced FIGO stage III epithelial ovarian cancer remains poor despite the aggressive standard treatment, consisting of maximal cytoreductive surgery and platinum-based chemotherapy. The median time to recurrence is less than 2 years, with a 5-years survival rate of -20-25%. Recurrences of the disease occur mostly intraperitoneally.</p> <p>Ovarian cancer is a radiosensitive tumor, so that the use of whole abdominal radiotherapy (WAR) as a consolidation therapy would appear to be a logical strategy. WAR used to be the standard treatment after surgery before the chemotherapy era; however, it has been almost totally excluded from the treatment of ovarian cancer during the past decade because of its high toxicity. Modern intensity-modulated radiation therapy (IMRT) has the potential of sparing organs at risk like kidneys, liver, and bone marrow while still adequately covering the peritoneal cavity with a homogenous dose.</p> <p>Our previous phase I study showed for the first time the clinical feasibility of intensity-modulated WAR and pointed out promising results concerning treatment tolerance. The current phase-II study succeeds to the phase-I study to further evaluate the toxicity of this new treatment.</p> <p>Methods/design</p> <p>The OVAR-IMRT-02 study is a single-center one arm phase-II trial. Thirty seven patients with optimally debulked ovarian cancer stage FIGO III having a complete remission after chemotherapy will be treated with intensity-modulated WAR as a consolidation therapy.</p> <p>A total dose of 30 Gy in 20 fractions of 1.5 Gy will be applied to the entire peritoneal cavity including the liver surface and the pelvic and para-aortic node regions. Organ at risk are kidneys, liver (except the 1 cm-outer border), heart, vertebral bodies and pelvic bones.</p> <p>Primary endpoint is tolerability; secondary objectives are toxicity, quality of life, progression-free and overall survival.</p> <p>Discussion</p> <p>Intensity-modulated WAR provides a new promising option in the consolidation treatment of ovarian carcinoma in patients with a complete pathologic remission after adjuvant chemotherapy. Further consequent studies will be needed to enable firm conclusions regarding the value of consolidation radiotherapy within the multimodal treatment of advanced ovarian cancer.</p> <p>Trial registration</p> <p>Clinicaltrials.gov: <a href="http://clinicaltrials.gov/ct2/show/NCT01180504">NCT01180504</a></p

    The role of complement in ocular pathology

    Get PDF
    Functionally active complement system and complement regulatory proteins are present in the normal human and rodent eye. Complement activation and its regulation by ocular complement regulatory proteins contribute to the pathology of various ocular diseases including keratitis, uveitis and age-related macular degeneration. Furthermore, a strong relationship between age-related macular degeneration and polymorphism in the genes of certain complement components/complement regulatory proteins is now well established. Recombinant forms of the naturally occurring complement regulatory proteins have been exploited in the animal models for treatment of these ocular diseases. It is hoped that in the future recombinant complement regulatory proteins will be used as novel therapeutic agents in the clinic for the treatment of keratitis, uveitis, and age-related macular degeneration

    Resectable pancreatic small cell carcinoma

    Get PDF
    Primary pancreatic small cell carcinoma (SCC) is rare, with just over 30 cases reported in the literature. Only 7 of these patients underwent surgical resection with a median survival of 6 months. Prognosis of SCC is therefore considered to be poor, and the role of adjuvant therapy is uncertain. Here we report two institutions' experience with resectable pancreatic SCC. Six patients with pancreatic SCC treated at the Johns Hopkins Hospital (4 patients) and the Mayo Clinic (2 patients) were identified from prospectively collected pancreatic cancer databases and re-reviewed by pathology. All six patients underwent a pancreaticoduodenectomy. Clinicopathologic data were analyzed, and the literature on pancreatic SCC was reviewed. Median age at diagnosis was 50 years (range 27–60). All six tumors arose in the head of the pancreas. Median tumor size was 3 cm, and all cases had positive lymph nodes except for one patient who only had five nodes sampled. There were no perioperative deaths and three patients had at least one postoperative complication. All six patients received adjuvant therapy, five of whom were given combined modality treatment with radiation, cisplatin, and etoposide. Median survival was 20 months with a range of 9–173 months. The patient who lived for 9 months received chemotherapy only, while the patient who lived for 173 months was given chemoradiation with cisplatin and etoposide and represents the longest reported survival time from pancreatic SCC to date. Pancreatic SCC is an extremely rare form of cancer with a poor prognosis. Patients in this surgical series showed favorable survival rates when compared to prior reports of both resected and unresectable SCC. Cisplatin and etoposide appears to be the preferred chemotherapy regimen, although its efficacy remains uncertain, as does the role of combined modality treatment with radiation

    Sensitivity of markers of DNA stability and DNA repair activity to folate supplementation in healthy volunteers

    Get PDF
    We have previously reported that supplementation with folic acid (1.2 mg day−1 for 12 week) elicited a significant improvement in the folate status of 61 healthy volunteers. We have examined effects of this supplement on markers of genomic stability. Little is known about the effect of folate supplementation on DNA stability in a cohort, which is not folate deficient. Preintervention, there was a significant inverse association between uracil misincorporation in lymphocyte DNA and red cell folate (P<0.05). In contrast, there were no associations between folate status and DNA strand breakage, global DNA methylation or DNA base excision repair (measured as the capacity of the lymphocyte extract to repair 8-oxoGua ex vivo). Folate supplementation elicited a significant reduction in uracil misincorporation (P<0.05), while DNA strand breakage and global DNA methylation remained unchanged. Increasing folate status significantly decreased the base excision repair capacity in those volunteers with the lowest preintervention folate status (P<0.05). Uracil misincorporation was more sensitive to changes in folate status than other measures of DNA stability and therefore could be considered a specific and functional marker of folate status, which may also be relevant to cancer risk in healthy people

    Cryopreservation Effect on Proliferative and Chondrogenic Potential of Human Chondrocytes Isolated from Superficial and Deep Cartilage

    Get PDF
    [Abstract] Objectives: To compare the proliferative and chondrogenic potential of fresh and frozen chondrocytes isolated from superficial and deep articular cartilage biopsies. Materials and Methodology: The study included 12 samples of fresh and frozen healthy human knee articular cartilage. Cell proliferation was tested at 3, 6 and 9 days. Studies of mRNA quantification, protein expression and immunofluorescence for proliferation and chondrogenic markers were performed. Results: Stimulation of fresh and frozen chondrocytes from both superficial and deep cartilage with fetal bovine serum produced an increase in the proliferative capacity compared to the non-stimulated control group. In the stimulated fresh cells group, the proliferative capacity of cells from the deep biopsy was greater than that from cells from the superficial biopsy (0.046 vs 0.028, respectively, p<0.05). There was also a significant difference between the proliferative capacity of superficial zone fresh (0.028) and frozen (0.051) chondrocytes (p<0.05). CCND1 mRNA and protein expression levels, and immunopositivity for Ki67 revealed a higher proliferative capacity for fresh articular chondrocytes from deep cartilage. Regarding the chondrogenic potential, stimulated fresh cells showed higher SOX9 and Col II expression in chondrocytes from deep than from superficial zone (p<0.05, T student test). Conclusions: The highest rate of cell proliferation and chondrogenic potential of fresh chondrocytes was found in cells obtained from deep cartilage biopsies, whereas there were no statistically significant differences in proliferative and chondrogenic capacity between biopsy origins with frozen chondrocytes. These results indicate that both origin and cryopreservation affect the proliferative and chondrogenic potential of chondrocytes.Servizo Galego de SaĂșde; PS07/84Instituto de Salud Carlos III; CIBER BBN CB06-01-0040Ministerio Ciencia e Innovacion; PLE2009-0144Ministerio Ciencia e InnovaciĂłn; PI 08/202

    In vitro mycorrhization of micropropagated plants: studies on Castanea sativa Mill.

    Get PDF
    In vitro mycorrhization can be made by several axenic and nonaxenic techniques but criticism exists about their artificiality and inability to reproduce under natural conditions. However, artificial mycorrhization under controlled conditions can provide important information about the physiology of symbiosis. Micropropagated Castanea sativa plants were inoculated with the mycorrhizal fungus Pisolithus tinctorius after in vitro rooting. The mycorrhizal process was monitored at regular intervals in order to evaluate the mantle and hartig net formation, and the growth rates of mycorrhizal and nonmycorrhizal plants. Plant roots show fungal hyphae adhesion at the surface after 24 hours of mycorrhizal induction. After 20 days a mantle can be observed and a hartig net is forming although the morphology of the epidermal cells remains unaltered. At 30 days of root–fungus contact the hartig net is well developed and the epidermal cells are already enlarged. After 50 days of mycorrhizal induction, growth was higher for mycorrhizal plants than for nonmycorrhizal ones. The length of the major roots was lower in mycorrhizal plants after 40 days. Fresh and dry weights were higher in mycorrhizal plants after 30 days. The growth rates of chestnut mycorrhizal plants are in agreement with the morphological development of the mycorrhizal structures observed at each mycorrhizal time. The assessment of symbiotic establishment takes into account the formation of a mantle and a hartig net that were already developed at 30 days, when differences between fresh and dry weights of mycorrhizal and nonmycorrhizal plants can be quantified. In vitro conditions, mycorrhization influences plant physiology after 20 days of root–fungus contact, namely in terms of growth rates. Fresh and dry weights, heights, stem diameter and growth rates increased while major root growth rate decreased in mycorrhizal plants.Springe

    RNA activation of haploinsufficient Foxg1 gene in murine neocortex

    Get PDF
    More than one hundred distinct gene hemizygosities are specifically linked to epilepsy, mental retardation, autism, schizophrenia and neuro-degeneration. Radical repair of these gene deficits via genome engineering is hardly feasible. The same applies to therapeutic stimulation of the spared allele by artificial transactivators. Small activating RNAs (saRNAs) offer an alternative, appealing approach. As a proof-of-principle, here we tested this approach on the Rett syndrome-linked, haploinsufficient, Foxg1 brain patterning gene. We selected a set of artificial small activating RNAs (saRNAs) upregulating it in neocortical precursors and their derivatives. Expression of these effectors achieved a robust biological outcome. saRNA-driven activation (RNAa) was limited to neural cells which normally express Foxg1 and did not hide endogenous gene tuning. saRNAs recognized target chromatin through a ncRNA stemming from it. Gene upregulation required Ago1 and was associated to RNApolII enrichment throughout the Foxg1 locus. Finally, saRNA delivery to murine neonatal brain replicated Foxg1-RNAa in vivo
    • 

    corecore