68 research outputs found

    miRNAs in Newt Lens Regeneration: Specific Control of Proliferation and Evidence for miRNA Networking

    Get PDF
    Background: Lens regeneration in adult newts occurs via transdifferentiation of the pigment epithelial cells (PECs) of the dorsal iris. The same source of cells from the ventral iris is not able to undergo this process. In an attempt to understand this restriction we have studied in the past expression patterns of miRNAs. Among several miRNAs we have found that mir-148 shows an up-regulation in the ventral iris, while members of the let-7 family showed down-regulation in dorsal iris during dedifferentiation. Methodology/Principal Findings: We have performed gain- and loss-of–function experiments of mir-148 and let-7b in an attempt to delineate their function. We find that up-regulation of mir-148 caused significant decrease in the proliferation rates of ventral PECs only, while up-regulation of let-7b affected proliferation of both dorsal and ventral PECs. Neither miRNA was able to affect lens morphogenesis or induction. To further understand how this effect of miRNA up-regulation is mediated we examined global expression of miRNAs after up-regulation of mir148 and let-7b. Interestingly, we identified a novel level of mirRNA regulation, which might indicate that miRNAs are regulated as a network. Conclusion/Significance: The major conclusion is that different miRNAs can control proliferation in the dorsal or ventral iris possibly by a different mechanism. Of interest is that down-regulation of the let-7 family members has also been documented in other systems undergoing reprogramming, such as in stem cells or oocytes. This might indicate tha

    Elevated miR-499 Levels Blunt the Cardiac Stress Response

    Get PDF
    The heart responds to myriad stresses by well-described transcriptional responses that involve long-term changes in gene expression as well as more immediate, transient adaptations. MicroRNAs quantitatively regulate mRNAs and thus may affect the cardiac transcriptional output and cardiac function. Here we investigate miR-499, a microRNA embedded within a ventricular-specific myosin heavy chain gene, which is expressed in heart and skeletal muscle.We assessed miR-499 expression in human tissue to confirm its potential relevance to human cardiac gene regulation. Using a transgenic mouse model, we found that elevated miR-499 levels caused cellular hypertrophy and cardiac dysfunction in a dose-dependent manner. Global gene expression profiling revealed altered levels of the immediate early stress response genes (Egr1, Egr2 and Fos), ß-myosin heavy chain (Myh7), and skeletal muscle actin (Acta1). We verified the effect of miR-499 on the immediate early response genes by miR-499 gain- and loss-of-function in vitro. Consistent with a role for miR-499 in blunting the response to cardiac stress, asymptomatic miR-499-expressing mice had an impaired response to pressure overload and accentuated cardiac dysfunction.Elevated miR-499 levels affect cardiac gene expression and predispose to cardiac stress-induced dysfunction. miR-499 may titrate the cardiac response to stress in part by regulating the immediate early gene response

    A Micro RNA Processing Defect in Rapidly Progressing Idiopathic Pulmonary Fibrosis

    Get PDF
    BACKGROUND: Idiopathic pulmonary fibrosis exhibits differential progression from the time of diagnosis but the molecular basis for varying progression rates is poorly understood. The aim of the present study was to ascertain whether differential miRNA expression might provide one explanation for rapidly versus slowly progressing forms of IPF. METHODOLOGY AND PRINCIPAL FINDINGS: miRNA and mRNA were isolated from surgical lung biopsies from IPF patients with a clinically documented rapid or slow course of disease over the first year after diagnosis. A quantitative PCR miRNA array containing 88 of the most abundant miRNA in the human genome was used to profile lung biopsies from 9 patients with rapidly progressing IPF, 6 patients with slowly progressing IPF, and 10 normal lung biopsies. Using this approach, 11 miRNA were significantly increased and 36 were significantly decreased in rapid biopsies compared with normal biopsies. Slowly progressive biopsies exhibited 4 significantly increased miRNA and 36 significantly decreased miRNA compared with normal lung. Among the miRNA present in IPF with validated mRNA targets were those with regulatory effects on epithelial-mesenchymal transition (EMT). Five miRNA (miR-302c, miR-423-5p, miR-210, miR-376c, and miR-185) were significantly increased in rapid compared with slow IPF lung biopsies. Additional analyses of rapid biopsies and fibroblasts grown from the same biopsies revealed that the expression of AGO1 and AGO2 (essential components of the miRNA processing RISC complex) were lower compared with either slow or normal lung biopsies and fibroblasts. CONCLUSION: These findings suggest that the development and/or clinical progression of IPF might be the consequence of aberrant miRNA processing

    Conjunctival MicroRNA expression in inflammatory trachomatous scarring.

    Get PDF
    PURPOSE: Trachoma is a fibrotic disease of the conjunctiva initiated by Chlamydia trachomatis infection. This blinding disease affects over 40 million people worldwide yet the mechanisms underlying its pathogenesis remain poorly understood. We have investigated host microRNA (miR) expression in health (N) and disease (conjunctival scarring with (TSI) and without (TS) inflammation) to determine if these epigenetic differences are associated with pathology. METHODS: We collected two independent samples of human conjunctival swab specimens from individuals living in The Gambia (nβ€Š=β€Š63 & 194). miR was extracted, and we investigated the expression of 754 miR in the first sample of 63 specimens (23 N, 17 TS, 23 TSI) using Taqman qPCR array human miRNA genecards. Network and pathway analysis was performed on this dataset. Seven miR that were significantly differentially expressed between different phenotypic groups were then selected for validation by qPCR in the second sample of 194 specimens (93 N, 74 TS, 22 TSI). RESULTS: Array screening revealed differential expression of 82 miR between N, TS and TSI phenotypes (fold change >3, p<0.05). Predicted mRNA targets of these miR were enriched in pathways involved in fibrosis and epithelial cell differentiation. Two miR were confirmed as being differentially expressed upon validation by qPCR. miR-147b is significantly up-regulated in TSI versus N (fold changeβ€Š=β€Š2.3, pβ€Š=β€Š0.03) and miR-1285 is up-regulated in TSI versus TS (fold changeβ€Š=β€Š4.6, pβ€Š=β€Š0.005), which was consistent with the results of the qPCR array. CONCLUSIONS: miR-147b and miR-1285 are up-regulated in inflammatory trachomatous scarring. Further investigation of the function of these miR will aid our understanding of the pathogenesis of trachoma

    Function and fate of myofibroblasts after myocardial infarction.

    Get PDF
    The importance of cardiac fibroblasts in the regulation of myocardial remodelling following myocardial infarction (MI) is becoming increasingly recognised. Studies over the last few decades have reinforced the concept that cardiac fibroblasts are much more than simple homeostatic regulators of extracellular matrix turnover, but are integrally involved in all aspects of the repair and remodelling of the heart that occurs following MI. The plasticity of fibroblasts is due in part to their ability to undergo differentiation into myofibroblasts. Myofibroblasts are specialised cells that possess a more contractile and synthetic phenotype than fibroblasts, enabling them to effectively repair and remodel the cardiac interstitium to manage the local devastation caused by MI. However, in addition to their key role in cardiac restoration and healing, persistence of myofibroblast activation can drive pathological fibrosis, resulting in arrhythmias, myocardial stiffness and progression to heart failure. The aim of this review is to give an appreciation of both the beneficial and detrimental roles of the myofibroblast in the remodelling heart, to describe some of the major regulatory mechanisms controlling myofibroblast differentiation including recent advances in the microRNA field, and to consider how this cell type could be exploited therapeutically

    The miR-30 microRNA family targets smoothened to regulate hedgehog signalling in zebrafish early muscle development

    Get PDF
    The importance of microRNAs in development is now widely accepted. However, identifying the specific targets of individual microRNAs and understanding their biological significance remains a major challenge. We have used the zebrafish model system to evaluate the expression and function of microRNAs potentially involved in muscle development and study their interaction with predicted target genes. We altered expression of the miR-30 microRNA family and generated phenotypes that mimicked misregulation of the Hedgehog pathway. Inhibition of the miR-30 family increases activity of the pathway, resulting in elevated ptc1 expression and increased numbers of superficial slow-muscle fibres. We show that the transmembrane receptor smoothened is a target of this microRNA family. Our results indicate that fine coordination of smoothened activity by the miR-30 family allows the correct specification and differentiation of distinct muscle cell types during zebrafish embryonic development

    MicroRNAs 130a/b are regulated by BCR-ABL and downregulate expression of CCN3 in CML

    No full text
    Chronic Myeloid Leukaemia (CML) is a myeloproliferative disorder characterized by the expression of the oncoprotein, Bcr-Abl kinase. CCN3 normally functions as a negative growth regulator, but it is downregulated in CML, the mechanism of which is not known. MicroRNAs (miRNAs) are small non-coding RNAs, which negatively regulate protein translation by binding to the complimentary sequences of the 3β€² UTR of messenger RNAs. Deregulated miRNA expression has emerged as a hallmark of cancer. In CML, BCR-ABL upregulates oncogenic miRNAs and downregulates tumour suppressor miRNAs favouring leukaemic transformation. We report here that the downregulation of CCN3 in CML is mediated by BCR-ABL dependent miRNAs. Using the CML cell line K562, we profiled miRNAs, which are BCR-ABL dependent by transfecting K562 cells with anti-BCR-ABL siRNA. MiRNA expression levels were quantified using the Taqman Low Density miRNA array platform. From the miRNA target prediction databases we identified miRNAs that could potentially bind to CCN3 mRNA and reduce expression. Of these, miR-130a, miR-130b, miR-148a, miR-212 and miR-425-5p were significantly reduced on BCR-ABL knockdown, with both miR-130a and miR-130b decreasing the most within 24Β h of siRNA treatment. Transfection of mature sequences of miR-130a and miR-130b individually into BCR-ABL negative HL60 cells resulted in a decrease of both CCN3 mRNA and protein. The reduction in CCN3 was greatest with overexpression of miR-130a whereas miR-130b overexpression resulted only in marginal repression of CCN3. This study shows that miRNAs modulate CCN3 expression. Deregulated miRNA expression initiated by BCR-ABL may be one mechanism of downregulating CCN3 whereby leukaemic cells evade negative growth regulation
    • …
    corecore