319 research outputs found
Adaptive processes drive ecomorphological convergent evolution in antwrens (Thamnophilidae)
© 2014 The Author(s). Phylogenetic niche conservatism (PNC) and convergence are contrasting evolutionary patterns that describe phenotypic similarity across independent lineages. Assessing whether and how adaptive processes give origin to these patterns represent a fundamental step toward understanding phenotypic evolution. Phylogenetic model-based approaches offer the opportunity not only to distinguish between PNC and convergence, but also to determine the extent that adaptive processes explain phenotypic similarity. The Myrmotherula complex in the Neotropical family Thamnophilidae is a polyphyletic group of sexually dimorphic small insectivorous forest birds that are relatively homogeneous in size and shape. Here, we integrate a comprehensive species-level molecular phylogeny of the Myrmotherula complex with morphometric and ecological data within a comparative framework to test whether phenotypic similarity is described by a pattern of PNC or convergence, and to identify evolutionary mechanisms underlying body size and shape evolution. We show that antwrens in the Myrmotherula complex represent distantly related clades that exhibit adaptive convergent evolution in body size and divergent evolution in body shape. Phenotypic similarity in the group is primarily driven by their tendency to converge toward smaller body sizes. Differences in body size and shape across lineages are associated to ecological and behavioral factors
Extrapair paternity in two populations of the socially monogamous Thorn-tailed Rayadito Aphrastura spinicauda (Passeriformes: Furnariidae)
Studies on extrapair paternity (EPP) are key to understanding the ecological and evolutionary drivers of variation in avian mating strategies, but information is currently lacking for most tropical and subtropical taxa. We describe the occurrence of EPP in two populations of a South American socially monogamous bird, the Thorn-tailed Rayadito, based on data from 266 broods and 895 offspring that were sampled during six breeding seasons in north-central and southern Chile. In the northern population, 21% of the broods contained at least one extrapair young and 14% of all offspring were sired by an extrapair male, while in the southern population, we detected extrapair offspring (EPO) in 14% of the broods, and 6% of all offspring were EPO. Variation in the frequency of EPP could stem from population differences in the duration of the breeding season or the density of breeding individuals. Other factors such as differences in breeding synchrony and variation in food availability need to be evaluated. More reports on EPP rates are necessary to determine the patterns of taxonomic and geographic variation in mating strategies in Neotropical birds, and to better understand the differences in ecological dynamics between northern and southern hemisphere populations.Fil: Botero Delgadillo, Esteban. Max Plank Institute For Ornithology; Alemania. SELVA: Investigación para la Conservación en el Neotrópico; Colombia. Universidad de Chile; ChileFil: Quirici, Verónica. Universidad Andrés Bello; ChileFil: Poblete, Yanina. Universidad de Las Américas; ChileFil: Ippi, Silvina Graciela. Universidad Nacional del Comahue. Centro Regional Universitario Bariloche. Departamento de Ecología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Kempenaers, Bart. Max Plank Institute For Ornithology; AlemaniaFil: Vásquez, Rodrigo A.. Universidad de Chile; Chil
Age and terminal reproductive attempt influence laying date in the Thorn‐tailed Rayadito
Age‐specific variation in reproductive effort can affect population dynamics, and is a key component of the evolution of reproductive tactics. Late‐life declines are a typical feature of variation in reproduction. However, the cause of these declines, and thus their implications for the evolution of life‐history tactics, may differ. Some prior studies have shown late‐life reproductive declines to be tied to chronological age, whereas other studies have found declines associated with terminal reproduction irrespective of chronological age. We investigated the extent to which declines in late life reproduction are related to chronological age, terminal reproductive attempt or a combination of both in the Thorn‐tailed Rayadito (Aphrastura spinicauda), a small passerine bird that inhabits the temperate forest of South America. To this end we used long‐term data (10 years) obtained on reproductive success (laying date, clutch size and nestling weight) of females in a Chilean population. Neither chronological age nor terminal reproductive attempt explained variation in clutch size or nestling weight, however we observed that during the terminal reproductive attempt older females tended to lay later in the breeding season and younger females laid early in the breeding season, but this was not the case when the reproductive attempt was not the last. These results suggests that both age‐dependent and age‐independent effects influence reproductive output and therefore that the combined effects of age and physiological condition may be more relevant than previously thought
Lineage diversification and morphological evolution in a large-scale continental radiation: The neotropical ovenbirds and woodcreepers (aves: furnariidae)
Patterns of diversification in species-rich clades provide insight into the processes that generate biological diversity. We tested different models of lineage and phenotypic diversification in an exceptional continental radiation, the ovenbird family Furnariidae, using the most complete species-level phylogenetic hypothesis produced to date for a major avian clade (97% of 293 species). We found that the Furnariidae exhibit nearly constant rates of lineage accumulation but show evidence of constrained morphological evolution. This pattern of sustained high rates of speciation despite limitations on phenotypic evolution contrasts with the results of most previous studies of evolutionary radiations, which have found a pattern of decelerating diversity-dependent lineage accumulation coupled with decelerating or constrained phenotypic evolution. Our results suggest that lineage accumulation in tropical continental radiations may not be as limited by ecological opportunities as in temperate or island radiations. More studies examining patterns of both lineage and phenotypic diversification are needed to understand the often complex tempo and mode of evolutionary radiations on continents. © 2011 The Author(s). Evolution © 2011 The Society for the Study of Evolution
Food abundance does not determine bird use of early-successional habitat.
Abstract. Few attempts have been made to experimentally address the extent to which temporal or spatial variation in food availability influences avian habitat use. We used an experimental approach to investigate whether bird use differed between treated (arthropods reduced through insecticide application) and control (untreated) forest canopy gaps within a bottomland hardwood forest in the Upper Coastal Plain of South Carolina, USA. Gaps were two- to three-year-old group selection timber harvest openings of three sizes (0.13, 0.26, and 0.50 ha). Our study was conducted during four bird use periods (spring migration, breeding, post-breeding, and fall migration) in 2002 and 2003. Arthropods were reduced in treated gaps by 68% in 2002 and 73% in 2003. We used mist-netting captures and foraging attack rates to assess the influence of arthropod abundance on avian habitat use. Evidence that birds responded to arthropod abundance was limited and inconsistent. In 2002, we generally captured more birds in treated gaps of the smallest size (0.13 ha) and fewer birds in treated gaps of the larger sizes. In 2003, we recorded few differences in the number of captures in treated and control gaps. Foraging attack rates generally were lower in treated than in control gaps, indicating that birds were able to adapt to the reduced food availability and remain in treated gaps. We conclude that arthropod abundance was not a proximate factor controlling whether forest birds used our gaps. The abundance of food resources may not be as important in determining avian habitat selection as previous research has indicated, at least for passerines in temperate subtropical regions
- …