1,163 research outputs found
Comprehensive investigation of the symmetric space-star configuration in the nucleon-deuteron breakup
We examine a description of available cross section data for symmetric space
star (SST) configurations in the neutron-deuteron (nd) and proton-deuteron (pd)
breakup reaction using numerically exact solutions of the three-nucleon (3N)
Faddeev equation based on two- and three-nucleon (semi)phenomenological and
chiral forces. The predicted SST cross sections are very stable with respect to
the underlying dynamics for incoming nucleon laboratory energies below MeV. We discuss possible origins of the surprising discrepancies between
theory and data found in low-energy nd and pd SST breakup measurements.Comment: 30 pages, 12 figure
Shepherding DNA ends: Rif1 protects telomeres and chromosome breaks
Cells have evolved conserved mechanisms to protect DNA ends, such as those at the termini of linear chromosomes, or those at DNA double-strand breaks (DSBs). In eukaryotes, DNA ends at chromosomal termini are packaged into proteinaceous structures called telomeres. Telomeres protect chromosome ends from erosion, inadvertent activation of the cellular DNA damage response (DDR), and telomere fusion. In contrast, cells must respond to damage-induced DNA ends at DSBs by harnessing the DDR to restore chromosome integrity, avoiding genome instability and disease. Intriguingly, Rif1 (Rap1-interacting factor 1) has been implicated in telomere homeostasis as well as DSB repair. The protein was first identified in as being part of the proteinaceous telosome. In mammals, RIF1 is not associated with intact telomeres, but was found at chromosome breaks, where RIF1 has emerged as a key mediator of pathway choice between the two evolutionary conserved DSB repair pathways of non-homologous end-joining (NHEJ) and homologous recombination (HR). While this functional dichotomy has long been a puzzle, recent findings link yeast Rif1 not only to telomeres, but also to DSB repair, and mechanistic parallels likely exist. In this review, we will provide an overview of the actions of Rif1 at DNA ends and explore how exclusion of end-processing factors might be the underlying principle allowing Rif1 to fulfill diverse biological roles at telomeres and chromosome breaks
Electronic structure of YbB: Is it a Topological Insulator or not?
To resolve the controversial issue of the topological nature of the
electronic structure of YbB, we have made a combined study using density
functional theory (DFT) and angle resolved photoemission spectroscopy (ARPES).
Accurate determination of the low energy band topology in DFT requires the use
of modified Becke-Johnson exchange potential incorporating the spin-orbit
coupling and the on-site Coulomb interaction of Yb electrons as large
as 7 eV. We have double-checked the DFT result with the more precise GW band
calculation. ARPES is done with the non-polar (110) surface termination to
avoid band bending and quantum well confinement that have confused ARPES
spectra taken on the polar (001) surface termination. Thereby we show
definitively that YbB has a topologically trivial B 2-Yb 5
semiconductor band gap, and hence is a non-Kondo non-topological insulator
(TI). In agreement with theory, ARPES shows pure divalency for Yb and a -
band gap of 0.3 eV, which clearly rules out both of the previous scenarios of
- band inversion Kondo TI and - band inversion non-Kondo TI. We
have also examined the pressure-dependent electronic structure of YbB,
and found that the high pressure phase is not a Kondo TI but a
\emph{p}-\emph{d} overlap semimetal.Comment: The main text is 6 pages with 4 figures, and the supplementary
information contains 6 figures. 11 pages, 10 figures in total To be appeared
in Phys. Rev. Lett. (Online publication is around March 16 if no delays.
Manufacturing improvements project and its impact on financial outcome
In response to changes in the external conditions of the oil and gas processing industry, the requirements for the equipment of the oil refinery are forced to change, which calls for the implementation of investment projects. The article considers the data on the implementation of the project for the reconstruction of the primary oil refinery, shows its main technical and economic indicators, examines the direction of the project's impact on the financial performance of the enterprise as a whole
Towards high-order calculations of three-nucleon scattering in chiral effective field theory
We discuss the current status of chiral effective field theory in the three-nucleon sector and present selected results for nucleon–deuteron scattering observables based on semilocal momentum-space-regularized chiral two-nucleon potentials together with consistently regularized three-nucleon forces up to third chiral order. Using a Bayesian model for estimating truncation errors, the obtained results are found to provide a good description of the experimental data. We confirm our earlier findings that a high-precision description of nucleon–deuteron scattering data below pion production threshold will require the theory to be pushed to fifth chiral order. This conclusion is substantiated by an exploratory study of selected short-range contributions to the three-nucleon force at that order, which, as expected, are found to have significant effects on polarization observables at intermediate and high energies. We also outline the challenges that will need to be addressed in order to push the chiral expansion of three-nucleon scattering observables to higher orders
Detecting genomic indel variants with exact breakpoints in single- and paired-end sequencing data using SplazerS
Motivation: The reliable detection of genomic variation in resequencing data is still a major challenge, especially for variants larger than a few base pairs. Sequencing reads crossing boundaries of structural variation carry the potential for their identification, but are difficult to map.
Results: Here we present a method for ‘split’ read mapping, where prefix and suffix match of a read may be interrupted by a longer gap in the read-to-reference alignment. We use this method to accurately detect medium-sized insertions and long deletions with precise breakpoints in genomic resequencing data. Compared with alternative split mapping methods, SplazerS significantly improves sensitivity for detecting large indel events, especially in variant-rich regions. Our method is robust in the presence of sequencing errors as well as alignment errors due to genomic mutations/divergence, and can be used on reads of variable lengths. Our analysis shows that SplazerS is a versatile tool applicable to unanchored or single-end as well as anchored paired-end reads. In addition, application of SplazerS to targeted resequencing data led to the interesting discovery of a complete, possibly functional gene retrocopy variant.
Availability: SplazerS is available from http://www.seqan.de/projects/ splazers
Systematics of electronic and magnetic properties in the transition metal doped SbTe quantum anomalous Hall platform
The quantum anomalous Hall effect (QAHE) has recently been reported to emerge
in magnetically-doped topological insulators. Although its general
phenomenology is well established, the microscopic origin is far from being
properly understood and controlled. Here we report on a detailed and systematic
investigation of transition-metal (TM)-doped SbTe. By combining density
functional theory (DFT) calculations with complementary experimental
techniques, i.e., scanning tunneling microscopy (STM), resonant photoemission
(resPES), and x-ray magnetic circular dichroism (XMCD), we provide a complete
spectroscopic characterization of both electronic and magnetic properties. Our
results reveal that the TM dopants not only affect the magnetic state of the
host material, but also significantly alter the electronic structure by
generating impurity-derived energy bands. Our findings demonstrate the
existence of a delicate interplay between electronic and magnetic properties in
TM-doped TIs. In particular, we find that the fate of the topological surface
states critically depends on the specific character of the TM impurity: while
V- and Fe-doped SbTe display resonant impurity states in the vicinity
of the Dirac point, Cr and Mn impurities leave the energy gap unaffected. The
single-ion magnetic anisotropy energy and easy axis, which control the magnetic
gap opening and its stability, are also found to be strongly TM
impurity-dependent and can vary from in-plane to out-of-plane depending on the
impurity and its distance from the surface. Overall, our results provide
general guidelines for the realization of a robust QAHE in TM-doped
SbTe in the ferromagnetic state.Comment: 40 pages, 13 figure
Towards high-order calculations of three-nucleon scattering in chiral effective field theory
We discuss the current status of chiral effective field theory in the three-nucleon sector and present selected results for nucleon–deuteron scattering observables based on semilocal momentum-space-regularized chiral two-nucleon potentials together with consistently regularized three-nucleon forces up to third chiral order. Using a Bayesian model for estimating truncation errors, the obtained results are found to provide a good description of the experimental data. We confirm our earlier findings that a high-precision description of nucleon–deuteron scattering data below pion production threshold will require the theory to be pushed to fifth chiral order. This conclusion is substantiated by an exploratory study of selected short-range contributions to the three-nucleon force at that order, which, as expected, are found to have significant effects on polarization observables at intermediate and high energies. We also outline the challenges that will need to be addressed in order to push the chiral expansion of three-nucleon scattering observables to higher orders
- …