7 research outputs found

    Functional significance of thermosensitive transient receptor potential melastatin channel 8 (TRPM8) expression in immortalized human corneal endothelial cells.

    No full text
    Human corneal endothelial cells (HCEC) maintain appropriate tissue hydration and transparency by eliciting net ion transport coupled to fluid egress from the stroma into the anterior chamber. Such activity offsets tissue swelling caused by stromal imbibition of fluid. As corneal endothelial (HCE) transport function is modulated by temperature changes, we probed for thermosensitive transient receptor potential melastatin 8 (TRPM8) functional activity in immortalized human corneal endothelial cells (HCEC-12) and freshly isolated human corneal endothelial cells (HCEC) as a control. This channel is either activated upon lowering to 28 °C or by menthol, eucalyptol and icilin. RT-PCR and quantitative real-time PCR (qPCR) verified TRPM8 gene expression. Ca(2+) transients induced by either menthol (500 μmol/l), eucalyptol (3 mmol/l), or icilin (2-60 μmol/l) were identified using cell fluorescence imaging. The TRP channel blocker lanthanum III chloride (La(3+), 100 μmol/l) as well as the TRPM8 blockers BCTC (10 μmol/l) and capsazepine (CPZ, 10 μmol/l) suppressed icilin-induced Ca(2+) increases. In and outward currents induced by application of menthol (500 μmol/l) or icilin (50 μmol/l) were detected using the planar patch-clamp technique. A thermal transition from room temperature to ≈ 18 °C led to Ca(2+) increases that were inhibited by a TRPM8 blocker BCTC (10 μmol/l). Other thermosensitive TRP pathways whose heterogeneous Ca(2+) response patterns are suggestive of other Ca(2+) handling pathways were also detected upon strong cooling (≈10 °C). Taken together, functional TRPM8 expression in HCEC-12 and freshly dissociated HCEC suggests that HCE function can adapt to thermal variations through activation of this channel subtype

    Mode Of Peroxisome Proliferator-activated Receptor γ Activation By Luteolin

    No full text
    The peroxisome proliferator-activated receptor γ (PPARγ) is a target for treatment of type II diabetes and other conditions. PPARγ full agonists, such as thiazolidinediones (TZDs), are effective insulin sensitizers and anti-inflammatory agents, but their use is limited by adverse side effects. Luteolin is a flavonoid with anti-inflammatory actions that binds PPARγ but, unlike TZDs, does not promote adipocyte differentiation. However, previous reports suggested variously that luteolin is a PPARγ agonist or an antagonist. We show that luteolin exhibits weak partial agonist/antagonist activity in transfections, inhibits several PPARγ target genes in 3T3-L1 cells (LPL, ORL1, and CEBPα) and PPARγ- dependent adipogenesis, but activates GLUT4 to a similar degree as rosiglitazone, implying gene-specific partial agonism. The crystal structure of the PPARγ ligand-binding domain (LBD) reveals that luteolin occupies a buried ligand-binding pocket (LBP) but binds an inactive PPARγ LBD conformer and occupies a space near the β-sheet region far from the activation helix (H12), consistent with partial agonist/antagonist actions. A single myristic acid molecule simultaneously binds the LBP, suggesting that luteolin may cooperate with other ligands to bind PPARγ, and molecular dynamics simulations show that luteolin and myristic acid cooperate to stabilize the Ω-loop among H2′, H3, and the β-sheet region. It is noteworthy that luteolin strongly suppresses hypertonicity- induced release of the pro-inflammatory interleukin-8 from human corneal epithelial cells and reverses reductions in transepithelial electrical resistance. This effect is PPARγ-dependent. We propose that activities of luteolin are related to its singular binding mode, that anti-inflammatory activity does not require H12 stabilization, and that our structure can be useful in developing safe selective PPARγ modulators. Copyright © 2012 The American Society for Pharmacology and Experimental Therapeutics.816788799Acton III, J.J., Black, R.M., Jones, A.B., Moller, D.E., Colwell, L., Doebber, T.W., MacNaul, K.L., Wood, H.B., Benzoyl 2-methyl indoles as selective PPARgamma modulators (2005) Bioorganic and Medicinal Chemistry Letters, 15 (2), pp. 357-362. , DOI 10.1016/j.bmcl.2004.10.068, PII S0960894X04013071Adams, P.D., Afonine, P.V., Bunkóczi, G., Chen, V.B., Davis, I.W., Echols, N., Headd, J.J., Grosse-Kunstleve, R.W., PHENIX: A comprehensive Python-based system for macromolecular structure solution (2010) Acta Crystallogr D Biol Crystallogr, 66, pp. 213-221Ambrosio, A.L.B., Dias, S.M.G., Polikarpov, I., Zurier, R.B., Burstein, S.H., Garratt, R.C., Ajulemic acid, a synthetic nonpsychoactive cannabinoid acid, bound to the ligand binding domain of the human peroxisome proliferator-activated receptor gamma (2007) Journal of Biological Chemistry, 282 (25), pp. 18625-18633. , http://www.jbc.org/cgi/reprint/282/25/18625, DOI 10.1074/jbc.M702538200Armoni, M., Harel, C., Karnieli, E., Transcriptional regulation of the GLUT4 gene: from PPAR-gamma and FOXO1 to FFA and inflammation (2007) Trends in Endocrinology and Metabolism, 18 (3), pp. 100-107. , DOI 10.1016/j.tem.2007.02.001, PII S1043276007000069Auwerx, J., PPARgamma, the ultimate thrifty gene (1999) Diabetologia, 42, pp. 1033-1049Berger, J., Moller, D.E., The mechanisms of action of PPARs (2002) Annual Review of Medicine, 53, pp. 409-435. , DOI 10.1146/annurev.med.53.082901.104018Berger, J.P., Petro, A.E., Macnaul, K.L., Kelly, L.J., Zhang, B.B., Richards, K., Elbrecht, A., Moller, D.E., Distinct properties and advantages of a novel peroxisome proliferator-activated protein gamma selective modulator (2003) Molecular Endocrinology, 17 (4), pp. 662-676. , DOI 10.1210/me.2002-0217Borniquel, S., Jansson, E.A., Cole, M.P., Freeman, B.A., Lundberg, J.O., Nitrated oleic acid up-regulates PPARgamma and attenuates experimental inflammatory bowel disease (2010) Free Radic Biol Med, 48, pp. 499-505Bruning, J.B., Chalmers, M.J., Prasad, S., Busby, S.A., Kamenecka, T.M., He, Y., Nettles, K.W., Griffin, P.R., Partial Agonists Activate PPARgamma Using a Helix 12 Independent Mechanism (2007) Structure, 15 (10), pp. 1258-1271. , DOI 10.1016/j.str.2007.07.014, PII S0969212607002870Choi, J.H., Banks, A.S., Estall, J.L., Kajimura, S., Boström, P., Laznik, D., Ruas, J.L., Blüher, M., Anti-diabetic drugs inhibit obesitylinked phosphorylation of PPARgamma by Cdk5 (2010) Nature, 466, pp. 451-456Choi, J.H., Banks, A.S., Kamenecka, T.M., Busby, S.A., Chalmers, M.J., Kumar, N., Kuruvilla, D.S., Bruning, J.B., Antidiabetic actions of a non-agonist PPARγ ligand blocking Cdk5-mediated phosphorylation (2011) Nature, 477, pp. 477-481Chui, P.C., Guan, H.-P., Lehrke, M., Lazar, M.A., PPARgamma regulates adipocyte cholesterol metabolism via oxidized LDL receptor 1 (2005) Journal of Clinical Investigation, 115 (8), pp. 2244-2256. , DOI 10.1172/JCI24130The CCP4 suite: Programs for protein crystallography (1994) Acta Crystallogr D Biol Crystallogr, 50, pp. 760-763. , Collaborative Computational Project Number 4Deqiu, Z., Kang, L., Jiali, Y., Baolin, L., Gaolin, L., Luteolin inhibits inflammatory response and improves insulin sensitivity in the endothelium (2011) Biochimie, 93, pp. 506-512Ding, L., Jin, D., Chen, X., Luteolin enhances insulin sensitivity via activation of PPARγ transcriptional activity in adipocytes (2010) J Nutr Biochem, 21, pp. 941-947Emsley, P., Cowtan, K., Coot: Model-building tools for molecular graphics (2004) Acta Crystallographica Section D: Biological Crystallography, 60 (12 I), pp. 2126-2132. , DOI 10.1107/S0907444904019158Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery Jr., J.A., Burant, J.C., (2004) Gaussian 03 Revision E01, , Gaussian, Wallingford CTGampe Jr., R.T., Montana, V.G., Lambert, M.H., Miller, A.B., Bledsoe, R.K., Milburn, M.V., Kliewer, S.A., Xu, H.E., Asymmetry in the PPARgamma/RXRalpha crystal structure reveals the molecular basis of heterodimerization among nuclear receptors (2000) Mol Cell, 5, pp. 545-555Giaginis, C., Giagini, A., Theocharis, S., Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) ligands as potential therapeutic agents to treat arthritis (2009) Pharmacol Res, 60, pp. 160-169Guimarães, B.G., Sanfelici, L., Neuenschwander, R.T., Rodrigues, F., Grizolli, W.C., Raulik, M.A., Piton, J.R., Polikarpov, I., The MX2 macromolecular crystallography beamline: A wiggler X-ray source at the LNLS (2009) J Synchrotron Radiat, 16, pp. 69-75Hamuro, Y., Coales, S.J., Morrow, J.A., Molnar, K.S., Tuske, S.J., Southern, M.R., Griffin, P.R., Hydrogen/deuterium-exchange (H/D-Ex) of PPARgamma LBD in the presence of various modulators (2006) Protein Science, 15 (8), pp. 1883-1892. , http://www.proteinscience.org/cgi/reprint/15/8/1883, DOI 10.1110/ps.062103006Hansson, A., Souza, P.C., Silveira, R.L., Martínez, L., Skaf, M.S., CHARMM force field parametrization of rosiglitazone (2011) Int J Quantum Chem, 111, pp. 1346-1354Havsteen, B.H., The biochemistry and medical significance of the flavonoids (2002) Pharmacol Ther, 96, pp. 67-202Higgins, L.S., Depaoli, A.M., Selective peroxisome proliferator-activated receptor gamma (PPARgamma) modulation as a strategy for safer therapeutic PPARgamma activation (2010) Am J Clin Nutr, 91, pp. 267S-272SItoh, T., Fairall, L., Amin, K., Inaba, Y., Szanto, A., Balint, B.L., Nagy, L., Schwabe, J.W., Structural basis for the activation of PPARgamma by oxidized fatty acids (2008) Nat Struct Mol Biol, 15, pp. 924-931Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., Klein, M.L., Comparison of simple potential functions for simulating liquid water (1983) J Chem Physics, 79, pp. 926-935Kallenberger, B.C., Love, J.D., Chatterjee, V.K.K., Schwabe, J.W.R., A dynamic mechanism of nuclear receptor activation and its perturbation in a human disease (2003) Nature Structural Biology, 10 (2), pp. 136-140. , DOI 10.1038/nsb892Klemm, D.J., Leitner, J.W., Watson, P., Nesterova, A., Reusch, J.E., Goalstone, M.L., Draznin, B., Insulin-induced adipocyte differentiation. Activation of CREB rescues adipogenesis from the arrest caused by inhibition of prenylation (2001) J Biol Chem, 276, pp. 28430-28435Kliewer, S.A., Lenhard, J.M., Willson, T.M., Patel, I., Morris, D.C., Lehmann, J.M., A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor gamma and promotes adipocyte differentiation (1995) Cell, 83 (5), pp. 813-819. , DOI 10.1016/0092-8674(95)90194-9Koshiyama, H., Shimono, D., Kuwamura, N., Minamikawa, J., Nakamura, Y., Inhibitory effect of pioglitazone on carotid arterial wall thickness in type 2 diabetes (2001) Journal of Clinical Endocrinology and Metabolism, 86 (7), pp. 3452-3456. , DOI 10.1210/jc.86.7.3452Laplante, M., Sell, H., MacNaul, K.L., Richard, D., Berger, J.P., Deshaies, Y., PPAR-gamma activation mediates adipose depot-specific effects on gene expression and lipoprotein lipase activity: Mechanisms for modulation of postprandial lipemia and differential adipose accretion (2003) Diabetes, 52 (2), pp. 291-299. , DOI 10.2337/diabetes.52.2.291Larsen, T.M., Toubro, S., Astrup, A., PPARgamma agonists in the treatment of type II diabetes: Is increased fatness commensurate with long-term efficacy? (2003) International Journal of Obesity, 27 (2), pp. 147-161. , DOI 10.1038/sj.ijo.802223Lehmann, J.M., Lenhard, J.M., Oliver, B.B., Ringold, G.M., Kliewer, S.A., Peroxisome proliferator-activated receptors alpha and gamma are activated by indomethacin and other non-steroidal anti-inflammatory drugs (1997) J Biol Chem, 272, pp. 3406-3410Lehmann, J.M., Moore, L.B., Smith-Oliver, T.A., Wilkison, W.O., Willson, T.M., Kliewer, S.A., An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma) (1995) J Biol Chem, 270, pp. 12953-12956Lehrke, M., Lazar, M.A., The many faces of PPARgamma. Cell 123:993-999. Leslie AG (1999) Integration of macromolecular diffraction data (2005) Acta Crystallogr D Biol Crystallogr, 55, pp. 1696-1702Lewis, J.D., Lichtenstein, G.R., Stein, R.B., Deren, J.J., Judge, T.A., Fogt, F., Furth, E.E., Wu, G.D., An open-label trial of the PPARgamma ligand rosiglitazone for active ulcerative colitis (2001) American Journal of Gastroenterology, 96 (12), pp. 3323-3328. , DOI 10.1016/S0002-9270(01)03895-3, PII S0002927001038953Li, D.-Q., Luo, L., Chen, Z., Kim, H.-S., Song, X.J., Pflugfelder, S.C., JNK and ERK MAP kinases mediate induction of IL-1beta, TNF-alpha and IL-8 following hyperosmolar stress in human limbal epithelial cells (2006) Experimental Eye Research, 82 (4), pp. 588-596. , DOI 10.1016/j.exer.2005.08.019, PII S0014483505002654Li, Y., Zhang, J., Schopfer, F.J., Martynowski, D., Garcia-Barrio, M.T., Kovach, A., Suino-Powell, K., Chen, Y.E., Molecular recognition of nitrated fatty acids by PPAR gamma (2008) Nat Struct Mol Biol, 15, pp. 865-867Liu, K., Black, R.M., Acton III, J.J., Mosley, R., Debenham, S., Abola, R., Yang, M., Wood, H.B., Selective PPARgamma modulators with improved pharmacological profiles (2005) Bioorganic and Medicinal Chemistry Letters, 15 (10), pp. 2437-2440. , DOI 10.1016/j.bmcl.2005.03.092Luo, L., Li, D.-Q., Corrales, R.M., Pflugfelder, S.C., Hyperosmolar saline is a proinflammatory stress on the mouse ocular surface (2005) Eye and Contact Lens, 31 (5), pp. 186-193. , DOI 10.1097/01.ICL.0000162759.79740.46MacKerell Jr., A.D., Bashford, D., Bellott, M., Dunbrack Jr., R.L., Evanseck, J.D., Field, M.J., Fischer, S., Karplus, M., All-atom empirical potential for molecular modeling and dynamics studies of proteins (1998) Journal of Physical Chemistry B, 102 (18), pp. 3586-3616Martínez, L., Andreani, R., Martínez, J.M., Convergent algorithms for protein structural alignment (2007) BMC Bioinformatics, 8, p. 306Morrison, R.F., Farmer, S.R., Insights into the transcriptional control of adipocyte differentiation (1999) Journal of Cellular Biochemistry, 76 (SUPPL. 32-33), pp. 59-67Mudaliar, S., Chang, A.R., Henry, R.R., Thiazolidinediones, peripheral edema, and type 2 diabetes: Incidence, pathophysiology, and clinical implications (2003) Endocr Pract, 9, pp. 406-416Mueller, M., Lukas, B., Novak, J., Simoncini, T., Genazzani, A.R., Jungbauer, A., Oregano: A source for peroxisome proliferator-activated receptor gamma antagonists (2008) J Agric Food Chem, 56, pp. 11621-11630Nissen, S.E., Wolski, K., Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes (2007) New England Journal of Medicine, 356 (24), pp. 2457-2471. , http://content.nejm.org/cgi/reprint/356/24/2457.pdfNolte, R.T., Wisely, G.B., Westin, S., Cobb, J.E., Lambert, M.H., Kurokawa, R., Rosenfeld, M.G., Milburn, M.V., Ligand binding and co-activator assembly of the peroxisome proliferator- activated receptor-gamma (1998) Nature, 395 (6698), pp. 137-143. , DOI 10.1038/25931Park, H.S., Kim, S.H., Kim, Y.S., Ryu, S.Y., Hwang, J.T., Yang, H.J., Kim, G.H., Kim, M.S., Luteolin inhibits adipogenic differentiation by regulating PPAR-gamma activation (2009) Biofactors, 35, pp. 373-379Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Schulten, K., Scalable molecular dynamics with NAMD (2005) Journal of Computational Chemistry, 26 (16), pp. 1781-1802. , DOI 10.1002/jcc.20289Ricote, M., Glass, C.K., PPARs and molecular mechanisms of transrepression (2007) Biochim Biophys Acta, 1771, pp. 926-935Ricote, M., Huang, J., Fajas, L., Li, A., Welch, J., Najib, J., Witztum, J.L., Glass, C.K., Expression of the peroxisome proliferator-activated receptor gamma (PPARgamma) in human atherosclerosis and regulation in macrophages by colony stimulating factors and oxidized low density lipoprotein (1998) Proc Natl Acad Sci USA, 95, pp. 7614-7619Saika, S., Yamanaka, O., Okada, Y., Miyamoto, T., Kitano, A., Flanders, K.C., Ohnishi, Y., Ikeda, K., Effect of overexpression of ppargamma on the healing process of corneal alkali burn in mice (2007) American Journal of Physiology - Cell Physiology, 293 (1), pp. C75-C86. , http://ajpcell.physiology.org/cgi/reprint/293/1/C75, DOI 10.1152/ajpcell.00332.2006Sarayba, M.A., Li, L., Tungsiripat, T., Liu, N.H., Sweet, P.M., Patel, A.J., Osann, K.E., Chuck, R.S., Inhibition of corneal neovascularization by a peroxisome proliferator-activated receptor-gamma ligand (2005) Experimental Eye Research, 80 (3), pp. 435-442. , DOI 10.1016/j.exer.2004.10.009Singh, U.C., Kollman, P.A., An approach to computing eletrostatic charges for molecules (1984) J Comput Chem, 5, pp. 129-145Tontonoz, P., Hu, E., Graves, R.A., Budavari, A.I., Spiegelman, B.M., mPPAR gamma 2: Tissue-specific regulator of an adipocyte enhancer (1994) Genes Dev, 8, pp. 1224-1234Waku, T., Shiraki, T., Oyama, T., Fujimoto, Y., Maebara, K., Kamiya, N., Jingami, H., Morikawa, K., Structural insight into PPARgamma activation through covalent modification with endogenous fatty acids (2009) J Mol Biol, 385, pp. 188-199Waku, T., Shiraki, T., Oyama, T., Maebara, K., Nakamori, R., Morikawa, K., The nuclear receptor PPARγ individually responds to serotonin- and fatty acidmetabolites (2010) EMBO J, 29, pp. 3395-3407Xagorari, A., Papapetropoulos, A., Mauromatis, A., Economou, M., Fotsis, T., Roussos, C., Luteolin inhibits an endotoxin-stimulated phosphorylation cascade and proinflammatory cytokine production in macrophages (2001) Journal of Pharmacology and Experimental Therapeutics, 296 (1), pp. 181-187Yang, H., Reinach, P.S., Koniarek, J.P., Wang, Z., Iserovich, P., Fischbarg, J., Fluid transport by cultured corneal epithelial cell layers (2000) British Journal of Ophthalmology, 84 (2), pp. 199-204. , DOI 10.1136/bjo.84.2.199Zoete, V., Grosdidier, A., Michielin, O., Peroxisome proliferator-activated receptor structures: Ligand specificity, molecular switch and interactions with regulators (2007) Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids, 1771 (8), pp. 915-925. , DOI 10.1016/j.bbalip.2007.01.007, PII S138819810700010

    TRPM7 kinase is required for insulin production and compensatory islet responses during obesity.

    No full text
    Most overweight individuals do not develop diabetes due to compensatory islet responses to restore glucose homeostasis. Therefore, regulatory pathways that promote β-cell compensation are potential targets for treatment of diabetes. The melastatin transient receptor potential 7 protein (TRPM7), harboring a cation channel and a serine/threonine kinase, has been implicated in controlling cell growth and proliferation. Here, we report that selective deletion of Trpm7 in β-cells disrupts insulin secretion and leads to progressive glucose intolerance. We indicate that the diminished insulinotropic response in β-cell-specific Trpm7 knockout mice is caused by decreased insulin production due to an impaired enzymatic activity of this protein. Accordingly, high-fat fed mice with a genetic loss of TRPM7 kinase activity (Trpm7R/R) display a marked glucose intolerance accompanied by hyperglycemia. These detrimental glucoregulatory effects are engendered by reduced compensatory β-cell responses due to mitigated AKT/ERK signaling. Collectively, our data identify TRPM7 kinase as a novel regulator of insulin synthesis, β-cell dynamics, and glucose homeostasis under obesogenic diet
    corecore