105 research outputs found

    A new model for global glacier change and sea-level rise

    Get PDF
    The anticipated retreat of glaciers around the globe will pose far-reaching challenges to the management of fresh water resources and significantly contribute to sea-level rise within the coming decades. Here, we present a new model for calculating the twenty-first century mass changes of all glaciers on Earth outside the ice sheets. The Global Glacier Evolution Model (GloGEM) includes mass loss due to frontal ablation at marine-terminating glacier fronts and accounts for glacier advance/retreat and surface elevation changes. Simulations are driven with monthly near-surface air temperature and precipitation from 14 Global Circulation Models forced by RCP2.6, RCP4.5, and RCP8.5 emission scenarios. Depending on the scenario, the model yields a global glacier volume loss of 25–48% between 2010 and 2100. For calculating glacier contribution to sea-level rise, we account for ice located below sea-level presently displacing ocean water. This effect reduces the glacier contribution by 11–14%, so that our model predicts a sea-level equivalent (multi-model mean ±1 standard deviation) of 79±24 mm (RCP2.6), 108±28 mm (RCP4.5), and 157±31 mm (RCP8.5). Mass losses by frontal ablation account for 10% of total ablation globally, and up to ~30% regionally. Regional equilibrium line altitudes are projected to rise by ~100–800 m until 2100, but the effect on ice wastage depends on initial glacier hypsometries

    Variations in Alaska tidewater glacier frontal ablation, 1985–2013

    Get PDF
    Our incomplete knowledge of the proportion of mass loss due to frontal ablation (the sum of ice loss through calving and submarine melt) from tidewater glaciers outside of the Greenland and Antarctic ice sheets has been cited as a major hindrance to accurate predictions of global sea level rise. We present a 28 year record (1985–2013) of frontal ablation for 27 Alaska tidewater glaciers (representing 96% of the total tidewater glacier area in the region), calculated from satellite-derived ice velocities and modeled estimates of glacier ice thickness. We account for cross-sectional ice thickness variation, long-term thickness changes, mass lost between an upstream fluxgate and the terminus, and mass change due to changes in terminus position. The total mean rate of frontal ablation for these 27 glaciers over the period 1985–2013 is 15.11 ± 3.63Gta⁻¹. Two glaciers, Hubbard and Columbia, account for approximately 50% of these losses. The regional total ablation has decreased at a rate of 0.14Gta⁻¹ over this time period, likely due to the slowing and thinning of many of the glaciers in the study area. Frontal ablation constitutes only ∼4% of the total annual regional ablation, but roughly 20% of net mass loss. Comparing several commonly used approximations in the calculation of frontal ablation, we find that neglecting cross-sectional thickness variations severely underestimates frontal ablation

    Response of Glacier Melt and Discharge to Future Climate Change, Susitna Basin, Alaska

    Get PDF
    A large dam for hydropower with a 67 km long reservoir is proposed in the Susitna basin, leading to multiple studies of the basin. This study focuses on the response of climate change of the Susitna basin glaciers and the effects on basin discharge

    Антикризове управління як одне з напрямів підвищення ефективності діяльності підприємства

    Get PDF
    У статті розглянуто основні етапи антикризового управління та чинники, що визначають ефективність антикризових заходів. Запропоновано основні етапи реалізації політики антикризового фінансового управління підприємством за умови загрози банкрутства. Ключові слова: антикризове управління, підприємство, банкрутство, стратегії управління, етапи антикризового управління, ефективність антикризового управління.В статье рассматриваются основные этапы антикризисного управления и факторы, которые определяют эффективность антикризисных мероприятий. Предложены основные этапы реализации политики антикризисного финансового управления при угрозе банкротства. Ключевые слова: антикризисное управление, предприятие, банкротство, стратегии управления, этапы антикризисного управления, эффективность антикризисного управления.The basic stages of crisis management and factors, which determine efficiency of crisis management, — are described in this article. The basic stages of realization policy of crisic financial management in threat of bankruptcy,- were propose. Key words: crisis management, enterprise, bankruptcy, strategies of management, stages of crisis management, efficiency of crisis management

    Estimating Future Flood Frequency and Magnitude in Basins Affected by Glacier Wastage

    Get PDF
    INE/AUTC 15.0

    Challenges in modeling the energy balance and melt in the percolation zone of the Greenland ice sheet.

    Get PDF
    Increased surface melt in the percolation zone of the Greenland ice sheet causes significant changes in the firn structure, directly affecting the amount and timing of meltwater runoff. Here we force an energy-balance model with automatic weather stations data at two sites in the percolation zone of southwest Greenland ( and 2360 m a.s.l.) between spring and fall . Extensive model validation and sensitivity analysis reveal that the skin layer formulation used to compute the surface temperature by closing the energy balance leads to a consistent overestimation of melt by more than a factor of two or three depending on the site. In contrast, model results match the observations well when the model is forced by observed surface temperatures; however, unexplained residuals in the energy balance occur. The sensible and ground heat flux differ markedly in the two simulations accounting largely for the difference in modeled melt amounts. This indicates that the energy available for melt is highly sensitive to small changes in surface temperature. Thus, regional climate models that also use the skin layer formulation may have a bias in surface temperature and melt energy in the percolation zone of the ice sheet

    Surface velocity and mass balance of Livingston Island ice cap, Antarctica

    Get PDF
    The mass budget of the ice caps surrounding the Antarctica Peninsula and, in particular, the partitioning of its main components are poorly known. Here we approximate frontal ablation (i.e. the sum of mass losses by calving and submarine melt) and surface mass balance of the ice cap of Livingston Island, the second largest island in the South Shetland Islands archipelago, and analyse variations in surface velocity for the period 2007–2011. Velocities are obtained from feature tracking using 25 PALSAR-1 images, and used in conjunction with estimates of glacier ice thicknesses inferred from principles of glacier dynamics and ground-penetrating radar observations to estimate frontal ablation rates by a flux-gate approach. Glacier-wide surface mass-balance rates are approximated from in situ observations on two glaciers of the ice cap. Within the limitations of the large uncertainties mostly due to unknown ice thicknesses at the flux gates, we find that frontal ablation (−509 ± 263 Mt yr−1, equivalent to −0.73 ± 0.38 m w.e. yr−1 over the ice cap area of 697 km2) and surface ablation (−0.73 ± 0.10 m w.e. yr−1) contribute similar shares to total ablation (−1.46 ± 0.39 m w.e. yr−1). Total mass change (δM = −0.67 ± 0.40 m w.e. yr−1) is negative despite a slightly positive surface mass balance (0.06 ± 0.14 m w.e. yr−1). We find large interannual and, for some basins, pronounced seasonal variations in surface velocities at the flux gates, with higher velocities in summer than in winter. Associated variations in frontal ablation (of ~237 Mt yr−1; −0.34 m w.e. yr−1) highlight the importance of taking into account the seasonality in ice velocities when computing frontal ablation with a flux-gate approach

    Which glaciers are the largest in the world?

    Full text link
    Glacier monitoring has been internationally coordinated for more than 125 years. Despite this long history, there is no authoritative answer to the popular question: ‘Which glaciers are the largest in the world?’ Here, we present the first systematic assessment of this question and identify the largest glaciers in the world – distinct from the two ice sheets in Greenland and Antarctica but including the glaciers on the Antarctic Peninsula. We identify the largest glaciers in two domains: on each of the seven geographical continents and in the 19 first-order glacier regions defined by the Global Terrestrial Network for Glaciers. Ranking glaciers by area is non-trivial. It depends on how a glacier is defined and mapped and also requires differentiating between a glacier and a glacier complex, i.e. glaciers that meet at ice divides such as ice caps and icefields. It also depends on the availability of a homogenized global glacier inventory. Using separate rankings for glaciers and glacier complexes, we find that the largest glacier complexes have areas on the order of tens of thousands of square kilometers whereas the largest glaciers are several thousands of square kilometers. The world's largest glaciers and glacier complexes are located in the Antarctic, Arctic and Patagonia

    Runaway thinning of the low-elevation Yakutat Glacier, Alaska, and its sensitivity to climate change

    Get PDF
    Lake-calving Yakutat Glacier in southeast Alaska, USA, is undergoing rapid thinning and terminus retreat. We use a simplified glacier model to evaluate its future mass loss. In a first step we compute glacier-wide mass change with a surface mass-balance model, and add a mass loss component due to ice flux through the calving front. We then use an empirical elevation change curve to adjust for surface elevation change of the glacier and finally use a flotation criterion to account for terminus retreat due to frontal ablation. Surface mass balance is computed on a daily timescale; elevation change and retreat is adjusted on a decadal scale. We use two scenarios to simulate future mass change: (1) keeping the current (2000–10) climate and (2) forcing the model with a projected warming climate. We find that the glacier will disappear in the decade before 2110 or 2070 under constant or warming climates, respectively. For the first few decades, the glacier can maintain its current thinning rates by retreating and associated loss of high-ablating, low-elevation areas. However, once higher elevations have thinned substantially, the glacier can no longer counteract accelerated thinning by retreat and mass loss accelerates, even under constant climate conditions. We find that it would take a substantial cooling of 1.5°C to reverse the ongoing retreat. It is therefore likely that Yakutat Glacier will continue its retreat at an accelerating rate and disappear entirely
    corecore