897 research outputs found

    The effect of aspirin and eicosapentaenoic acid on urinary biomarkers of prostaglandin E2 synthesis and platelet activation in participants of the seAFOod polyp prevention trial

    Get PDF
    Urinary prostaglandin (PG) E metabolite (PGE-M) and 11-dehydro (d)-thromboxane (TX) B2 are biomarkers of cyclooxygenase-dependent prostanoid synthesis. We investigated (1) the effect of aspirin 300 mg daily and eicosapentaenoic acid (EPA) 2000 mg daily, alone and in combination, on urinary biomarker levels and, (2) whether urinary biomarker levels predicted colorectal polyp risk, during participation in the seAFOod polyp prevention trial. Urinary PGE-M and 11-d-TXB2 were measured by liquid chromatography-tandem mass spectrometry. The relationship between urinary biomarker levels and colorectal polyp outcomes was investigated using negative binomial (polyp number) and logistic (% with one or more polyps) regression models. Despite wide temporal variability in PGE-M and 11-d-TXB2 levels within individuals, both aspirin and, to a lesser extent, EPA decreased levels of both biomarkers (74% [P ≤.001] and 8% [P ≤.05] reduction in median 11-d-TXB2 values, respectively). In the placebo group, a high (quartile [Q] 2-4) baseline 11-d-TXB2 level predicted increased polyp number (incidence rate ratio [IRR] [95% CI] 2.26 [1.11,4.58]) and risk (odds ratio [95% CI] 3.56 [1.09,11.63]). A low (Q1) on-treatment 11-d-TXB2 level predicted reduced colorectal polyp number compared to placebo (IRR 0.34 [0.12,0.93] for combination aspirin and EPA treatment) compared to high on-treatment 11-d-TXB2 values (0.61 [0.34,1.11]). Aspirin and EPA both inhibit PGE-M and 11-d-TXB2 synthesis in keeping with shared in vivo cyclooxygenase inhibition. Colorectal polyp risk and treatment response prediction by 11-d-TXB2 is consistent with a role for platelet activation during early colorectal carcinogenesis. The use of urinary 11-d-TXB2 measurement for a precision approach to colorectal cancer risk prediction and chemoprevention requires prospective evaluation

    Plasma and rectal mucosal oxylipin levels during aspirin and eicosapentaenoic acid treatment in the seAFOod polyp prevention trial

    Get PDF
    BACKGROUND: Aspirin and eicosapentaenoic acid (EPA) have colorectal polyp prevention activity, alone and in combination. This study measured levels of plasma and rectal mucosal oxylipins in participants of the seAFOod 2 × 2 factorial, randomised, placebo-controlled trial, who received aspirin 300 mg daily and EPA 2000 mg free fatty acid, alone and in combination, for 12 months. METHODS: Resolvin (Rv) E1, 15-epi-lipoxin (LX) A4 and respective precursors 18-HEPE and 15-HETE (with chiral separation) were measured by ultra-high performance liquid chromatography-tandem mass spectrometry in plasma taken at baseline, 6 months and 12 months, as well as rectal mucosa obtained at trial exit colonoscopy at 12 months, in 401 trial participants. RESULTS: Despite detection of S- and R- enantiomers of 18-HEPE and 15-HETE in ng/ml concentrations, RvE1 or 15‑epi-LXA4 were not detected above a limit of detection of 20 pg/ml in plasma or rectal mucosa, even in individuals randomised to both aspirin and EPA. We have confirmed in a large clinical trial cohort that prolonged (12 months) treatment with EPA is associated with increased plasma 18-HEPE concentrations (median [inter-quartile range] total 18-HEPE 0.51 [0.21-1.95] ng/ml at baseline versus 0.95 [0.46-4.06] ng/ml at 6 months [P<0.0001] in those randomised to EPA alone), which correlate strongly with respective rectal mucosal 18-HEPE levels (r = 0.82; P<0.001), but which do not predict polyp prevention efficacy by EPA or aspirin. CONCLUSION: Analysis of seAFOod trial plasma and rectal mucosal samples has not provided evidence of synthesis of the EPA-derived specialised pro-resolving mediator RvE1 or aspirin-trigged lipoxin 15‑epi-LXA4. We cannot rule out degradation of individual oxylipins during sample collection and storage but readily measurable precursor oxylipins argues against widespread degradation

    New evidence for a massive black hole at the centre of the quiescent galaxy M32

    Full text link
    Massive black holes are thought to reside at the centres of many galaxies, where they power quasars and active galactic nuclei. But most galaxies are quiescent, indicating that any central massive black hole present will be starved of fuel and therefore detectable only through its gravitational influence on the motions of the surrounding stars. M32 is a nearby, quiescent elliptical galaxy in which the presence of a black hole has been suspected; however, the limited resolution of the observational data and the restricted classes of models used to interpret this data have made it difficult to rule out alternative explanations, such as models with an anisotropic stellar velocity distribution and no dark mass or models with a central concentration of dark objects (for example, stellar remnants or brown dwarfs). Here we present high-resolution optical HST spectra of M32, which show that the stellar velocities near the centre of this galaxy exceed those inferred from previous ground-based observations. We use a range of general dynamical models to determine a central dark mass concentration of (3.4 +/- 1.6) x 10^6 solar masses, contained within a region only 0.3 pc across. This leaves a massive black hole as the most plausible explanation of the data, thereby strengthening the view that such black holes exist even in quiescent galaxies.Comment: 8 pages, LaTeX, 3 figures; mpeg animation of the stellar motions in M32 available at http://oposite.stsci.edu/pubinfo/Anim.htm

    Entangled-State Cycles of Atomic Collective-Spin States

    Get PDF
    We study quantum trajectories of collective atomic spin states of NN effective two-level atoms driven with laser and cavity fields. We show that interesting ``entangled-state cycles'' arise probabilistically when the (Raman) transition rates between the two atomic levels are set equal. For odd (even) NN, there are (N+1)/2(N+1)/2 (N/2N/2) possible cycles. During each cycle the NN-qubit state switches, with each cavity photon emission, between the states (∣N/2,m>±∣N/2,−m>)/2(|N/2,m>\pm |N/2,-m>)/\sqrt{2}, where ∣N/2,m>|N/2,m> is a Dicke state in a rotated collective basis. The quantum number mm (>0>0), which distinguishes the particular cycle, is determined by the photon counting record and varies randomly from one trajectory to the next. For even NN it is also possible, under the same conditions, to prepare probabilistically (but in steady state) the Dicke state ∣N/2,0>|N/2,0>, i.e., an NN-qubit state with N/2N/2 excitations, which is of particular interest in the context of multipartite entanglement.Comment: 10 pages, 9 figure

    Feasibility of kilohertz frequency alternating current neuromodulation of carotid sinus nerve activity in the pig

    Get PDF
    Recent research supports that over-activation of the carotid body plays a key role in metabolic diseases like type 2 diabetes. Supressing carotid body signalling through carotid sinus nerve (CSN) modulation may offer a therapeutic approach for treating such diseases. Here we anatomically and histologically characterised the CSN in the farm pig as a recommended path to translational medicine. We developed an acute in vivo porcine model to assess the application of kilohertz frequency alternating current (KHFAC) to the CSN of evoked chemo-afferent CSN responses. Our results demonstrate the feasibility of this approach in an acute setting, as KHFAC modulation was able to successfully, yet variably, block evoked chemo-afferent responses. The observed variability in blocking response is believed to reflect the complex and diverse anatomy of the porcine CSN, which closely resembles human anatomy, as well as the need for optimisation of electrodes and parameters for a human-sized nerve. Overall, these results demonstrate the feasibility of neuromodulation of the CSN in an anesthetised large animal model, and represent the first steps in driving KHFAC modulation towards clinical translation. Chronic recovery disease models will be required to assess safety and efficacy of this potential therapeutic modality for application in diabetes treatment

    Cytoplasmic PML promotes TGF-β-associated epithelial–mesenchymal transition and invasion in prostate cancer

    Get PDF
    Epithelial–mesenchymal transition (EMT) is a key event that is involved in the invasion and dissemination of cancer cells. Although typically considered as having tumour-suppressive properties, transforming growth factor (TGF)-β signalling is altered during cancer and has been associated with the invasion of cancer cells and metastasis. In this study, we report a previously unknown role for the cytoplasmic promyelocytic leukaemia (cPML) tumour suppressor in TGF-β signalling-induced regulation of prostate cancer-associated EMT and invasion. We demonstrate that cPML promotes a mesenchymal phenotype and increases the invasiveness of prostate cancer cells. This event is associated with activation of TGF-β canonical signalling pathway through the induction of Sma and Mad related family 2 and 3 (SMAD2 and SMAD3) phosphorylation. Furthermore, the cytoplasmic localization of promyelocytic leukaemia (PML) is mediated by its nuclear export in a chromosomal maintenance 1 (CRM1)-dependent manner. This was clinically tested in prostate cancer tissue and shown that cytoplasmic PML and CRM1 co-expression correlates with reduced disease-specific survival. In summary, we provide evidence of dysfunctional TGF-β signalling occurring at an early stage in prostate cancer. We show that this disease pathway is mediated by cPML and CRM1 and results in a more aggressive cancer cell phenotype. We propose that the targeting of this pathway could be therapeutically exploited for clinical benefit

    Cytosine-to-Uracil Deamination by SssI DNA Methyltransferase

    Get PDF
    The prokaryotic DNA(cytosine-5)methyltransferase M.SssI shares the specificity of eukaryotic DNA methyltransferases (CG) and is an important model and experimental tool in the study of eukaryotic DNA methylation. Previously, M.SssI was shown to be able to catalyze deamination of the target cytosine to uracil if the methyl donor S-adenosyl-methionine (SAM) was missing from the reaction. To test whether this side-activity of the enzyme can be used to distinguish between unmethylated and C5-methylated cytosines in CG dinucleotides, we re-investigated, using a sensitive genetic reversion assay, the cytosine deaminase activity of M.SssI. Confirming previous results we showed that M.SssI can deaminate cytosine to uracil in a slow reaction in the absence of SAM and that the rate of this reaction can be increased by the SAM analogue 5’-amino-5’-deoxyadenosine. We could not detect M.SssI-catalyzed deamination of C5-methylcytosine (m5C). We found conditions where the rate of M.SssI mediated C-to-U deamination was at least 100-fold higher than the rate of m5C-to-T conversion. Although this difference in reactivities suggests that the enzyme could be used to identify C5-methylated cytosines in the epigenetically important CG dinucleotides, the rate of M.SssI mediated cytosine deamination is too low to become an enzymatic alternative to the bisulfite reaction. Amino acid replacements in the presumed SAM binding pocket of M.SssI (F17S and G19D) resulted in greatly reduced methyltransferase activity. The G19D variant showed cytosine deaminase activity in E. coli, at physiological SAM concentrations. Interestingly, the C-to-U deaminase activity was also detectable in an E. coli ung+ host proficient in uracil excision repair

    Behavioral activation interventions for well-being: A meta-analysis

    Get PDF
    One of the most promising ways to increase well-being is to engage in valued and enjoyable activities. Behavioral activation (BA), an intervention approach most commonly associated with the treatment of depression, is consistent with this recommendation and can easily be adapted for non-clinical populations. This study reports on a meta-analysis of randomized controlled studies to examine the effect of BA on well-being. Twenty studies with a total of 1353 participants were included. The pooled effect size (Hedges's g) indicated that the difference in well-being between BA and control conditions at posttest was 0.52. This significant effect, which is comparable to the pooled effect achieved by positive psychology interventions, was found for non-clinical participants and participants with elevated symptoms of depression. Behavioral activation would seem to provide a ready and attractive intervention for promoting the well-being of a range of populations in both clinical and non-clinical settings

    Distinct lung cell signatures define the temporal evolution of diffuse alveolar damage in fatal COVID-19

    Get PDF
    \ua9 2023 The Author(s)Background: Lung damage in severe COVID-19 is highly heterogeneous however studies with dedicated spatial distinction of discrete temporal phases of diffuse alveolar damage (DAD) and alternate lung injury patterns are lacking. Existing studies have also not accounted for progressive airspace obliteration in cellularity estimates. We used an imaging mass cytometry (IMC) analysis with an airspace correction step to more accurately identify the cellular immune response that underpins the heterogeneity of severe COVID-19 lung disease. Methods: Lung tissue was obtained at post-mortem from severe COVID-19 deaths. Pathologist-selected regions of interest (ROIs) were chosen by light microscopy representing the patho-evolutionary spectrum of DAD and alternate disease phenotypes were selected for comparison. Architecturally normal SARS-CoV-2-positive lung tissue and tissue from SARS-CoV-2-negative donors served as controls. ROIs were stained for 40 cellular protein markers and ablated using IMC before segmented cells were classified. Cell populations corrected by ROI airspace and their spatial relationships were compared across lung injury patterns. Findings: Forty patients (32M:8F, age: 22–98), 345 ROIs and &gt;900k single cells were analysed. DAD progression was marked by airspace obliteration and significant increases in mononuclear phagocytes (MnPs), T and B lymphocytes and significant decreases in alveolar epithelial and endothelial cells. Neutrophil populations proved stable overall although several interferon-responding subsets demonstrated expansion. Spatial analysis revealed immune cell interactions occur prior to microscopically appreciable tissue injury. Interpretation: The immunopathogenesis of severe DAD in COVID-19 lung disease is characterised by sustained increases in MnPs and lymphocytes with key interactions occurring even prior to lung injury is established. Funding: UK Research and Innovation/ Medical Research Council through the UK Coronavirus Immunology Consortium, Barbour Foundation, General Sir John Monash Foundation, Newcastle University, JGW Patterson Foundation, Wellcome Trust
    • …
    corecore