22,313 research outputs found
Low Resistance Polycrystalline Diamond Thin Films Deposited by Hot Filament Chemical Vapour Deposition
Polycrystalline diamond thin films with outgrowing diamond (OGD) grains were deposited onto silicon wafers using a hydrocarbon gas (CH4) highly diluted with H2 at low pressure in a hot filament chemical vapour deposition (HFCVD) reactor with a range of gas flow rates. X-ray diffraction (XRD) and SEM showed polycrystalline diamond structure with a random orientation. Polycrystalline diamond films with various textures were grown and (111) facets were dominant with sharp grain boundaries. Outgrowth was observed in flowerish character at high gas flow rates. Isolated single crystals with little openings appeared at various stages at low gas flow rates. Thus, changing gas flow rates had a beneficial influence on the grain size, growth rate and electrical resistivity. CVD diamond films gave an excellent performance for medium film thickness with relatively low electrical resistivity and making them potentially useful in many industrial applications
Promoter methylation regulates cyclooxygenase expression in breast cancer
INTRODUCTION: Overexpression of cyclooxygenase (COX-2) is commonly observed in human cancers. In a murine model of metastatic breast cancer, we observed that COX-2 expression and enzyme activity were associated with enhanced tumorigenic and metastatic potential. In contrast to the high COX-2 expression in metastatic tumors, transplantation of poorly tumorigenic tumor cell lines to syngeneic mice results in less COX-2 expression and less COX-2 activity in vivo. Aberrant CpG island methylation, and subsequent silencing of the COX-2 promoter, has been observed in human cancer cell lines and in some human tumors of the gastrointestinal tract. METHODS: Using bisulfite modification and a methylation-specific PCR, we examined the methylation status of the COX-2 promoter in a series of four closely-related murine mammary tumors differing in COX-2 expression and metastatic potential. RESULTS: We showed that line 410, which does not express COX-2 in vivo, exhibited evidence of promoter methylation. Interestingly, the metastatic counterpart of this cell (line 410.4) displayed only the unmethylated COX-2 promoter, as did two additional cell lines (lines 66.1 and 67). The methylation patterns observed in vitro were maintained when these murine mammary tumor lines were transplanted to syngeneic mice. Treatment with the DNA demethylating agent 5-aza-deoxycytidine increased COX-2 mRNA, increased protein and increased enzyme activity (prostaglandin synthesis). CONCLUSIONS: These results indicate that COX-2 promoter methylation may be one mechanism by which tumor cells regulate COX-2 expression. Upregulation of COX-2 expression in closely related metastatic lesions versus nonmetastatic lesions may represent a shift towards the unmethylated phenotype
Immune Amplification of Murine CD8+ Suppressor T Cells Induced via An Immune-Privileged Site: Quantifying Suppressor T Cells Functionally
BACKGROUND: CD8(+) suppressor T cells exert antigen-specific suppression of the expression of hypersensitivity by activated T cells. Therefore, CD8(+) suppressor T cells serve a major regulatory role for the control of active immunity. Accordingly, the number and/or activity of CD8(+) suppressor T cells should be influenced by an immune response to the antigen. To test this hypothesis we used an adoptive transfer assay that measures the suppression of the expression of delayed-type hypersensitivity (DTH) by CD8(+) suppressor T cells to quantify the antigen-specific suppression of DTH by these suppressor T cells. METHODS: Suppressor T cells were induced in the spleens of mice by the injection of antigen into the anterior chamber of an eye. Following this injection, the mice were immunized by the same antigen injected into the anterior chamber. Spleen cells recovered from these mice (AC-SPL cells) were titrated in an adoptive transfer assay to determine the number of AC-SPL cells required to effect a 50% reduction of antigen-induced swelling (Sw50) in the footpad of immunized mice challenged by antigen. RESULTS: Suppression of the expression of DTH is proportional to the number of AC-SPL cells injected into the site challenged by antigen. The number of AC-SPL cells required for a 50% reduction in DTH-induced swelling is reduced by injecting a cell population enriched for CD8(+) AC-SPL cells. Immunizing the mice receiving intracameral antigen to the same antigen decreases the RSw50 of AC-SPL cells required to inhibit the expression of DTH. CONCLUSIONS: The results provide the first quantitative demonstration that the numbers of antigen-specific splenic CD8(+) suppressor T cells are specifically amplified by antigen during an immune response
Gravitational radiation in quantum gravity
The effective field theory of quantum gravity generically predicts non-locality to be present in the effective action, which results from the low-energy propagation of gravitons and massless matter. Working to second order in gravitational curvature, we reconsider the effects of quantum gravity on the gravitational radiation emitted from a binary system. In particular, we calculate for the first time the leading order quantum gravitational correction to the classical quadrupole radiation formula which appears at second order in Newton’s constant
Human Bocavirus NS1 and NS1-70 Proteins Inhibit TNF-α-Mediated Activation of NF-κB by targeting p65.
Human bocavirus (HBoV), a parvovirus, is a single-stranded DNA etiologic agent causing lower respiratory tract infections in young children worldwide. Nuclear factor kappa B (NF-κB) transcription factors play crucial roles in clearance of invading viruses through activation of many physiological processes. Previous investigation showed that HBoV infection could significantly upregulate the level of TNF-α which is a strong NF-κB stimulator. Here we investigated whether HBoV proteins modulate TNF-α-mediated activation of the NF-κB signaling pathway. We showed that HBoV NS1 and NS1-70 proteins blocked NF-κB activation in response to TNF-α. Overexpression of TNF receptor-associated factor 2 (TRAF2)-, IκB kinase alpha (IKKα)-, IκB kinase beta (IKKβ)-, constitutively active mutant of IKKβ (IKKβ SS/EE)-, or p65-induced NF-κB activation was inhibited by NS1 and NS1-70. Furthermore, NS1 and NS1-70 didn't interfere with TNF-α-mediated IκBα phosphorylation and degradation, nor p65 nuclear translocation. Coimmunoprecipitation assays confirmed the interaction of both NS1 and NS1-70 with p65. Of note, NS1 but not NS1-70 inhibited TNF-α-mediated p65 phosphorylation at ser536. Our findings together indicate that HBoV NS1 and NS1-70 inhibit NF-κB activation. This is the first time that HBoV has been shown to inhibit NF-κB activation, revealing a potential immune-evasion mechanism that is likely important for HBoV pathogenesis
Effect of correlations on network controllability
A dynamical system is controllable if by imposing appropriate external
signals on a subset of its nodes, it can be driven from any initial state to
any desired state in finite time. Here we study the impact of various network
characteristics on the minimal number of driver nodes required to control a
network. We find that clustering and modularity have no discernible impact, but
the symmetries of the underlying matching problem can produce linear, quadratic
or no dependence on degree correlation coefficients, depending on the nature of
the underlying correlations. The results are supported by numerical simulations
and help narrow the observed gap between the predicted and the observed number
of driver nodes in real networks
Controlling spin relaxation with a cavity
Spontaneous emission of radiation is one of the fundamental mechanisms by
which an excited quantum system returns to equilibrium. For spins, however,
spontaneous emission is generally negligible compared to other non-radiative
relaxation processes because of the weak coupling between the magnetic dipole
and the electromagnetic field. In 1946, Purcell realized that the spontaneous
emission rate can be strongly enhanced by placing the quantum system in a
resonant cavity -an effect which has since been used extensively to control the
lifetime of atoms and semiconducting heterostructures coupled to microwave or
optical cavities, underpinning single-photon sources. Here we report the first
application of these ideas to spins in solids. By coupling donor spins in
silicon to a superconducting microwave cavity of high quality factor and small
mode volume, we reach for the first time the regime where spontaneous emission
constitutes the dominant spin relaxation mechanism. The relaxation rate is
increased by three orders of magnitude when the spins are tuned to the cavity
resonance, showing that energy relaxation can be engineered and controlled
on-demand. Our results provide a novel and general way to initialise spin
systems into their ground state, with applications in magnetic resonance and
quantum information processing. They also demonstrate that, contrary to popular
belief, the coupling between the magnetic dipole of a spin and the
electromagnetic field can be enhanced up to the point where quantum
fluctuations have a dramatic effect on the spin dynamics; as such our work
represents an important step towards the coherent magnetic coupling of
individual spins to microwave photons.Comment: 8 pages, 6 figures, 1 tabl
China’s rising hydropower demand challenges water sector
Demand for hydropower is increasing, yet the water footprints (WFs) of reservoirs and hydropower, and their contributions to water scarcity, are poorly understood. Here, we calculate reservoir WFs (freshwater that evaporates from reservoirs) and hydropower WFs (the WF of hydroelectricity) in China based on data from 875 representative reservoirs (209 with power plants). In 2010, the reservoir WF totaled 27.9 × 109 m3 (Gm3), or 22% of China’s total water consumption. Ignoring the reservoir WF seriously underestimates human water appropriation. The reservoir WF associated with industrial, domestic and agricultural WFs caused water scarcity in 6 of the 10 major Chinese river basins from 2 to 12 months annually. The hydropower WF was 6.6 Gm3 yr−1 or 3.6 m3 of water to produce a GJ (109 J) of electricity. Hydropower is a water intensive energy carrier. As a response to global climate change, the Chinese government has promoted a further increase in hydropower energy by 70% by 2020 compared to 2012. This energy policy imposes pressure on available freshwater resources and increases water scarcity. The water-energy nexus requires strategic and coordinated implementations of hydropower development among geographical regions, as well as trade-off analysis between rising energy demand and water use sustainability
Novel flaviviruses from mosquitoes: Mosquito-specific evolutionary lineages within the phylogenetic group of mosquito-borne flaviviruses
Copyright © 2014 The Authors. Published by Elsevier Inc. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The attached file is the published version of the article
- …