108 research outputs found

    A novel method for high-throughput detection and quantification of neutrophil extracellular traps reveals ROS-independent NET release with immune complexes

    Get PDF
    AbstractA newly-described first-line immune defence mechanism of neutrophils is the release of neutrophil extracellular traps (NETs). Immune complexes (ICxs) induce low level NET release. As such, the in vitro quantification of NETs is challenging with current methodologies. In order to investigate the role of NET release in ICx-mediated autoimmune diseases, we developed a highly sensitive and automated method for quantification of NETs. After labelling human neutrophils with PKH26 and extracellular DNA with Sytox green, cells are fixed and automatically imaged with 3-dimensional confocal laser scanning microscopy (3D-CLSM). NET release is then quantified with digital image analysis whereby the NET amount (Sytox green area) is corrected for the number of imaged neutrophils (PKH26 area). A high sensitivity of the assay is achieved by a) significantly augmenting the area of the well imaged (11%) as compared to conventional assays (0.5%) and b) using a 3D imaging technique for optimal capture of NETs, which are topologically superimposed on neutrophils. In this assay, we confirmed low levels of NET release upon human ICx stimulation which were positive for citrullinated histones and neutrophil elastase. In contrast to PMA-induced NET release, ICx-induced NET release was unchanged when co-incubated with diphenyleneiodonium (DPI). We were able to quantify NET release upon stimulation with serum from RA and SLE patients, which was not observed with normal human serum. To our knowledge, this is the first semi-automated assay capable of sensitive detection and quantification of NET release at a low threshold by using 3D CLSM. The assay is applicable in a high-throughput manner and allows the in vitro analysis of NET release in ICx-mediated autoimmune diseases

    Pooled peptides from HER-2/neu-overexpressing primary ovarian tumours induce CTL with potent antitumour responses in vitro and in vivo

    Get PDF
    Unfractionated peptides (MW: up to 10 kDa), derived from HLA-A2.1 positive (+) HER-2/neu-overexpressing primary tumour cell acid cell extracts (ACE), were successfully used to generate in vitro cytotoxic T lymphocytes (CTL). Primary tumour cells were collected from peritoneal malignant effusions of patients with ovarian cancer. Acid cell extracts-induced CTL specifically lysed in an HLA-A2-restricted manner HER-2/neu+ autologous primary tumour cells as well as HER-2/neu+ tumour cell lines. In addition, adoptive transfer of such CTL significantly prolonged the survival of SCID mice xenografted with HLA-A2.1+, HER-2/neu+ human breast and ovarian tumour cell lines. Acid cell extracts collected from HLA-A2.1+ HER-2/neu negative (−) primary ovarian tumours induced HLA-A2.1-restricted CTL with weak in vitro and in vivo antitumour capacity, suggesting that HER-2/neu peptides within ACE from HER-2/neu-overexpressing primary ovarian tumour cells are immunodominant. The results presented herein serve as a rationale for the initiation of vaccination studies in patients with HER-2/neu-overexpressing ovarian tumours utilising autologous tumour-derived ACE

    Enhancement of Tumour-Specific Immune Responses In Vivo by ‘MHC Loading-Enhancer’ (MLE)

    Get PDF
    BACKGROUND:Class II MHC molecules (MHC II) are cell surface receptors displaying short protein fragments for the surveillance by CD4+ T cells. Antigens therefore have to be loaded onto this receptor in order to induce productive immune responses. On the cell surface, most MHC II molecules are either occupied by ligands or their binding cleft has been blocked by the acquisition of a non-receptive state. Direct loading with antigens, as required during peptide vaccinations, is therefore hindered. PRINCIPAL FINDINGS:Here we show, that the in vivo response of CD4+ T cells can be improved, when the antigens are administered together with 'MHC-loading enhancer' (MLE). MLE are small catalytic compounds able to open up the MHC binding site by triggering ligand-release and stabilizing the receptive state. Their enhancing effect on the immune response was demonstrated here with an antigen from the influenza virus and tumour associated antigens (TAA) derived from the NY-ESO-1 protein. The application of these antigens in combination with adamantane ethanol (AdEtOH), an MLE compound active on human HLA-DR molecules, significantly increased the frequency of antigen-specific CD4+ T cells in mice transgenic for the human MHC II molecule. Notably, the effect was evident only with the MLE-susceptible HLA-DR molecule and not with murine MHC II molecules non-susceptible for the catalytic effect of the MLE. CONCLUSION:MLE can specifically increase the potency of a vaccine by facilitating the efficient transfer of the antigen onto the MHC molecule. They may therefore open a new way to improve vaccination efficacy and tumour-immunotherapy

    Dendritic Cells Crosspresent Antigens from Live B16 Cells More Efficiently than from Apoptotic Cells and Protect from Melanoma in a Therapeutic Model

    Get PDF
    Dendritic cells (DC) are able to elicit anti-tumoral CD8+ T cell responses by cross-presenting exogenous antigens in association with major histocompatibility complex (MHC) class I molecules. Therefore they are crucial actors in cell-based cancer immunotherapy. Although apoptotic cells are usually considered to be the best source of antigens, live cells are also able to provide antigens for cross-presentation by DC. We have recently shown that prophylactic immunotherapy by DC after capture of antigens from live B16 melanoma cells induced strong CD8+ T-cell responses and protection against a lethal tumor challenge in vivo in C57Bl/6 mice. Here, we showed that DC cross-presenting antigens from live B16 cells can also inhibit melanoma lung dissemination in a therapeutic protocol in mice. DC were first incubated with live tumor cells for antigen uptake and processing, then purified and irradiated for safety prior to injection. This treatment induced stronger tumor-specific CD8+ T-cell responses than treatment by DC cross-presenting antigens from apoptotic cells. Apoptotic B16 cells induced more IL-10 secretion by DC than live B16 cells. They underwent strong native antigen degradation and led to the expression of fewer MHC class I/epitope complexes on the surface of DC than live cells. Therefore, the possibility to use live cells as sources of tumor antigens must be taken into account to improve the efficiency of cancer immunotherapy

    Effect of B7.1 Costimulation on T-Cell Based Immunity against TAP-Negative Cancer Can Be Facilitated by TAP1 Expression

    Get PDF
    Tumors deficient in expression of the transporter associated with antigen processing (TAP) usually fail to induce T-cell-mediated immunity and are resistant to T-cell lysis. However, we have found that introduction of the B7.1 gene into TAP-negative (TAP−) or TAP1-transfected (TAP1+) murine lung carcinoma CMT.64 cells can augment the capacity of the cells to induce a protective immune response against wild-type tumor cells. Differences in the strength of the protective immune responses were observed between TAP− and TAP1+ B7.1 expressing CMT.64 cells depending on the doses of γ-irradiated cell immunization. While mice immunized with either high or low dose of B7.1-expressing TAP1+ cells rejected TAP− tumors, only high dose immunization with B7.1-expressing TAP− cells resulted in tumor rejection. The induced protective immunity was T-cell dependent as demonstrated by dramatically reduced antitumor immunity in mice depleted of CD8 or CD4 cells. Augmentation of T-cell mediated immune response against TAP− tumor cells was also observed in a virally infected tumor cell system. When mice were immunized with a high dose of γ-irradiated CMT.64 cells infected with vaccinia viruses carrying B7.1 and/or TAP1 genes, we found that the cells co-expressing B7.1 and TAP1, but not those expressing B7.1 alone, induced protective immunity against CMT.64 cells. In addition, inoculation with live tumor cells transfected with several different gene(s) revealed that only B7.1- and TAP1-coexpressing tumor cells significantly decreased tumorigenicity. These results indicate that B7.1-provoked antitumor immunity against TAP− cancer is facilitated by TAP1-expression, and thus both genes should be considered for cancer therapy in the future

    CTL Escape Mediated by Proteasomal Destruction of an HIV-1 Cryptic Epitope

    Get PDF
    Cytotoxic CD8+ T cells (CTLs) play a critical role in controlling viral infections. HIV-infected individuals develop CTL responses against epitopes derived from viral proteins, but also against cryptic epitopes encoded by viral alternative reading frames (ARF). We studied here the mechanisms of HIV-1 escape from CTLs targeting one such cryptic epitope, Q9VF, encoded by an HIVgag ARF and presented by HLA-B*07. Using PBMCs of HIV-infected patients, we first cloned and sequenced proviral DNA encoding for Q9VF. We identified several polymorphisms with a minority of proviruses encoding at position 5 an aspartic acid (Q9VF/5D) and a majority encoding an asparagine (Q9VF/5N). We compared the prevalence of each variant in PBMCs of HLA-B*07+ and HLA-B*07- patients. Proviruses encoding Q9VF/5D were significantly less represented in HLA-B*07+ than in HLA-B*07- patients, suggesting that Q9FV/5D encoding viruses might be under selective pressure in HLA-B*07+ individuals. We thus analyzed ex vivo CTL responses directed against Q9VF/5D and Q9VF/5N. Around 16% of HLA-B*07+ patients exhibited CTL responses targeting Q9VF epitopes. The frequency and the magnitude of CTL responses induced with Q9VF/5D or Q9VF/5N peptides were almost equal indicating a possible cross-reactivity of the same CTLs on the two peptides. We then dissected the cellular mechanisms involved in the presentation of Q9VF variants. As expected, cells infected with HIV strains encoding for Q9VF/5D were recognized by Q9VF/5D-specific CTLs. In contrast, Q9VF/5N-encoding strains were neither recognized by Q9VF/5N- nor by Q9VF/5D-specific CTLs. Using in vitro proteasomal digestions and MS/MS analysis, we demonstrate that the 5N variation introduces a strong proteasomal cleavage site within the epitope, leading to a dramatic reduction of Q9VF epitope production. Our results strongly suggest that HIV-1 escapes CTL surveillance by introducing mutations leading to HIV ARF-epitope destruction by proteasomes

    Immunogenicity and Efficacy of Single Antigen Gp63, Polytope and PolytopeHSP70 DNA Vaccines against Visceral Leishmaniasis in Experimental Mouse Model

    Get PDF
    Polytope approach of genetic immunization is a promising strategy for the prevention of infectious disease as it is capable of generating effective cell mediated immunity by delivering the T cell epitopes assembled in series. Leishmaniasis is a significant world wide health problem for which no vaccine exists. In this study we have compared immunogenicity and efficacy of three types of DNA vaccines: single antigen Gp63 (Gp63/pcDNA), polytope (Poly/pcDNA) and Polytope fused with hsp70 (Poly/hsp/pcDNA) against visceral leishmaniasis in susceptible BALB/c mice. Mice vaccinated with these plasmids generated strong Th1 immune response as seen by dominating IFN-γ over IL-10 cytokine. Interestingly, cytotoxic responses generated by polytope DNA plasmid fused with hsp70 of Leishmania donovani were significantly higher when compared to polytope and single antigen Gp63 vaccine. Challenge studies revealed that the parasite load in liver and spleen was significantly lower with Poly/hsp/pcDNA vaccination compared to other vaccines. Therefore, our study indicates that polytope DNA vaccine is a feasible, practical and effective approach for visceral leishmaniasis

    Characterization of NF-κB reporter U937 cells and their application for the detection of inflammatory immune-complexes

    Get PDF
    Our study tested the hypothesis that immunoglobulins differ in their ability to activate the nuclear factor-κB pathway mediated cellular responses. These responses are modulated by several properties of the immune complex, including the ratio of antibody isotypes binding to antigen. Immunoassays allow the measurement of antigen specific antibodies belonging to distinct immunoglobulin classes and subclasses but not the net biological effect of the combination of these antibodies. We set out to develop a biosensor that is suitable for the detection and characterization of antigen specific serum antibodies. We genetically modified the monocytoid U937 cell line carrying Fc receptors with a plasmid encoding NF-κB promoter-driven GFP. This clone, U937-NF-κB, was characterized with respect to FcR expression and response to solid-phase immunoglobulins. Human IgG3, IgG4 and IgG1 induced GFP production in a time- and dose-dependent manner, in this order of efficacy, while IgG2 triggered no activation at the concentrations tested. IgA elicited no response alone but showed significant synergism with IgG3 and IgG4. We confirmed the importance of activation via FcγRI by direct stimulation with monoclonal antibody and by competition assays. We used citrullinated peptides and serum from rheumatoid arthritis patients to generate immune complexes and to study the activation of U937-NF-κB, observing again a synergistic effect between IgG and IgA. Our results show that immunoglobulins have distinct pro-inflammatory potential, and that U937-NF-κB is suitable for the estimation of biological effects of immune-complexes, offering insight into monocyte activation and pathogenesis of antibody mediated diseases

    Pitfalls of vaccinations with WT1-, Proteinase3- and MUC1-derived peptides in combination with MontanideISA51 and CpG7909

    Get PDF
    T cells with specificity for antigens derived from Wilms Tumor gene (WT1), Proteinase3 (Pr3), and mucin1 (MUC1) have been demonstrated to lyse acute myeloid leukemia (AML) blasts and multiple-myeloma (MM) cells, and strategies to enhance or induce such tumor-specific T cells by vaccination are currently being explored in multiple clinical trials. To test safety and immunogenicity of a vaccine composed of WT1-, Pr3-, and MUC1-derived Class I-restricted peptides and the pan HLA-DR T helper cell epitope (PADRE) or MUC1-helper epitopes in combination with CpG7909 and MontanideISA51, four patients with AML and five with MM were repetitively vaccinated. No clinical responses were observed. Neither pre-existing nor naive WT1-/Pr3-/MUC1-specific CD8+ T cells expanded in vivo by vaccination. In contrast, a significant decline in vaccine-specific CD8+ T cells was observed. An increase in PADRE-specific CD4+ T helper cells was observed after vaccination but these appeared unable to produce IL2, and CD4+ T cells with a regulatory phenotype increased. Taken into considerations that multiple clinical trials with identical antigens but different adjuvants induced vaccine-specific T cell responses, our data caution that a vaccination with leukemia-associated antigens can be detrimental when combined with MontanideISA51 and CpG7909. Reflecting the time-consuming efforts of clinical trials and the fact that 1/3 of ongoing peptide vaccination trails use CpG and/or Montanide, our data need to be taken into consideration
    corecore