10 research outputs found

    The cranial nerves

    Get PDF
    With the exception of the olfactory and optic nerves, all cranial nerves enter or leave the brain stem. Three of the cranial nerves are purely sensory (I, II and VIII), five are motor (III, IV, VI, XI and XII) and the remaining nerves (V, VII, IX and X) are mixed. The olfactory nerve will be discussed in Chap. 14, the optic nerve in Chap. 8 and the cochlear nerve in Chap. 7. The nuclei of the cranial nerves are arranged in an orderly, more or less columnar fashion in the brain stem: motor nuclei, somatomotor, branchiomotor and visceromotor (parasympathetic), derived from the basal plate, are located medially, whereas sensory nuclei, somatosensory, viscerosensory and vestibulocochlear, derived from the alar plate, are found lateral to the sulcus limitans. The cranial nerves innervate structures in the head and neck as well as visceral organs in the thorax and abdomen. The cranial nerves control eye movements, mastication, vocalization, facial expression, respiration, heart rate and digestion. One or several of the cranial nerves are often involved in lesions of the brain stem, of which the location can usually be determined if the topographical anatomy of the cranial nerves and their nuclei is known. Several examples are shown in Clinical cases. Following a few notes on the development of the brain stem and congenital cranial dysinnervation disorders (Sect. 6.2), the following structures will be discussed: (1) ocular motor nerves and the effects of lesions of individual ocular motor nerves (Sect. 6.3); (2) eye movements and some disorders affecting them (Sect. 6.4); (3) the trigeminal nerve and changes in the blink reflex (Sect. 6.5); (4) the facial nerve and peripheral facial nerve paralysis (Sect. 6.6); (5) the gustatory system (Sect. 6.7); (6) the vestibulocochlear nerve, vestibular control and some peripheral and central vestibular syndromes (Sect. 6.8); and (7) the last four cranial nerves and some disorders affecting them (Sects. 6.9 and 6.10). The English terms of the Terminologia Neuroanatomica are used throughout.</p

    Metabolic changes associated with tumor metastasis, part 1: tumor pH, glycolysis and the pentose phosphate pathway

    No full text
    Metabolic adaptations are intimately associated with changes in cell behavior. Cancers are characterized by a high metabolic plasticity resulting from mutations and the selection of metabolic phenotypes conferring growth and invasive advantages. While metabolic plasticity allows cancer cells to cope with various microenvironmental situations that can be encountered in a primary tumor, there is increasing evidence that metabolism is also a major driver of cancer metastasis. Rather than a general switch promoting metastasis as a whole, a succession of metabolic adaptations is more likely needed to promote different steps of the metastatic process. This review addresses the contribution of pH, glycolysis and the pentose phosphate pathway, and a companion paper summarizes current knowledge regarding the contribution of mitochondria, lipids and amino acid metabolism. Extracellular acidification, intracellular alkalinization, the glycolytic enzyme phosphoglucose isomerase acting as an autocrine cytokine, lactate and the pentose phosphate pathway are emerging as important factors controlling cancer metastasis

    General Organization of Callosal Connections in the Cerebral Cortex

    No full text

    Cysteine Cathepsins in Neurological Disorders

    No full text

    Enzyme Handbook

    No full text
    corecore