1,328 research outputs found

    Can patterns of urban biodiversity be predicted using simple measures of green infrastructure?

    Get PDF
    Urban species and habitats provide important ecosystem services such as summertime cooling, recreation, and pollination at a variety of scales. Many studies have assessed how biodiversity responds to urbanization, but little work has been done to try and create recommendations that can be easily applied to urban planning, design and management practice. Urban planning often operates at broad spatial scales, typically using relatively simplistic targets for land cover mix to influence biodiversity and ecosystem service provision. Would more complicated, but still easily created, prescriptions for urban vegetation be beneficial? Here we assess the importance of vegetation measures (percentage vegetation cover, tree canopy cover and variation in canopy height) across four taxonomic groups (bats, bees, hoverflies and birds) at multiple spatial scales (100, 250, 500, 1000 m) within a major urban area (Birmingham, the United Kingdom). We found that small-scale (100–250-m radius) measures of vegetation were important predictors for hoverflies and bees, and that bats were sensitive to vegetation at a medium spatial-scale (250–500 m). In contrast, birds responded to vegetation characteristics at both small (100 m) and large (1000 m) scales. Vegetation cover, tree cover and variation in canopy height were expected to decrease with built surface cover; however, only vegetation height showed this expected trend. The results indicate the importance of relatively small patches of vegetation cover for supporting urban biodiversity, and show that relatively simple measures of vegetation characteristics can be useful predictors of species richness (or activity density, in the case of bats). They also highlight the danger of relying upon percentage built surface cover as an indicator of urban biodiversity potential

    Long-term production of greenhouse gases from exposed continental shelves and oceanic islands during Quaternary glacial periods

    Get PDF
    The EPICA Dome C ice core in Antarctica has yielded an 800,000-year record of atmospheric carbon dioxide and methane composition from the Middle Pleistocene climatic transition to the present. In this record, there is a sharp increase in both carbon dioxide and methane immediately following the glacial maxima during the glacial periods which to date remains difficult to explain. We will present evidence to show that the exposed continental shelves and ...published_or_final_versio

    High-resolution computed tomography reconstructions of invertebrate burrow systems

    Get PDF
    The architecture of biogenic structures can be highly influential in determining species contributions to major soil and sediment processes, but detailed 3-D characterisations are rare and descriptors of form and complexity are lacking. Here we provide replicate high-resolution micro-focus computed tomography (μ-CT) data for the complete burrow systems of three co-occurring, but functionally contrasting, sediment-dwelling inter-tidal invertebrates assembled alone, and in combination, in representative model aquaria. These data (≤2,000 raw image slices aquarium−1, isotropic voxel resolution, 81 μm) provide reference models that can be used for the development of novel structural analysis routines that will be of value within the fields of ecology, pedology, geomorphology, palaeobiology, ichnology and mechanical engineering. We also envisage opportunity for those investigating transport networks, vascular systems, plant rooting systems, neuron connectivity patterns, or those developing image analysis or statistics related to pattern or shape recognition. The dataset will allow investigators to develop or test novel methodology and ideas without the need to generate a complete three-dimensional computation of exemplar architecture

    Gel chromatographic characterization of immunoreactive adrenocorticotropin in patients with ACTH hypersecretion

    Get PDF
    We investigated the molecular size of circulating immunoreactive ACTH by gel chromatography in patients with ACTH hypersecretion due to various disorders of the hypothalamic-pituitary-adrenal axis. 4 patients with Addison's disease, 2 with Nelson's syndrome, 4 with Cushing's disease, 6 with the ectopic ACTH syndrome (2 bronchial carcinoma, 1 medullary carcinoma, 1 metastatic islett cell carcinoma, 1 benign bronchial carcinoid and 1 patient with occult ectopic Cushing's syndrome) and 1 patient with hypersecretion of ACTH from a clinically nonfunctioning pituitary adenoma were studied. Analysis of the molecular size of immunoreactive ACTH was performed by gel chromatography on a Sephadex G-75 column (superfine, 100×1.5 cm) equilibrated with 1% formic acid. 2 ml fractions were collected and evaporated to dryness. The ACTH content of the recovered samples was determined by RIA. In Addison's disease, Nelson's syndrome and Cushing's disease the plasma showed a single peak of ACTH immunoreactivity at the expected position of 1–39 ACTH. In the ectopic ACTH syndrome the plasma of 4 patients revealed at chromatography at least one other peak eluting between the void volume and 1–39 ACTH suggestive of a high molecular weight form of ACTH whereas plasma of 2 patients showed only a single ACTH peak at the position of labeled 1–39 ACTH. The patient with a clinically non-functioning pituitary adenoma revealed a gel filtration pattern similar to the patients with ectopic ACTH syndrom and secretion of high molecular weight ACTH. We conclude that secretion of high molecular weight forms of ACTH is not a unique feature of the ectopic ACTH syndrome. It may therefore not serve as a marker of the ectopic Cushing's syndrome in the differential diagnosis of the ACTH dependent Cushing's syndrome. Vice versa, lack of high molecular weight ACTH does not exclude an ectopic source of ACTH secretion as cause of Cushing's syndrome

    Discovery of Design Methodologies

    Get PDF
    In this paper we present an AI-based approach for the discovery of design methodologies for multi-disciplinary design situations. The approach is based on simulating the design process using a multi-agent system that mimics the behavior of the design team. The system activates the pieces of design knowledge when they become applicable. The use of knowledge by agents is recorded by tracing the steps that the agents have taken during a design project. Many traces are generated by solving a large number of design projects that differ in their requirements. A set of design methodologies is constructed by using clustering techniques to generalize the traces. These methodologies can be used to guide design teams through design projects

    Structural basis for CRISPR RNA-guided DNA recognition by Cascade

    Get PDF
    The CRISPR (clustered regularly interspaced short palindromic repeats) immune system in prokaryotes uses small guide RNAs to neutralize invading viruses and plasmids. In Escherichia coli, immunity depends on a ribonucleoprotein complex called Cascade. Here we present the composition and low-resolution structure of Cascade and show how it recognizes double-stranded DNA (dsDNA) targets in a sequence-specific manner. Cascade is a 405-kDa complex comprising five functionally essential CRISPR-associated (Cas) proteins (CasA1B2C6D1E1) and a 61-nucleotide CRISPR RNA (crRNA) with 5′-hydroxyl and 2′,3′-cyclic phosphate termini. The crRNA guides Cascade to dsDNA target sequences by forming base pairs with the complementary DNA strand while displacing the noncomplementary strand to form an R-loop. Cascade recognizes target DNA without consuming ATP, which suggests that continuous invader DNA surveillance takes place without energy investment. The structure of Cascade shows an unusual seahorse shape that undergoes conformational changes when it binds target DNA.

    Non-structural protein 1 of avian influenza A viruses differentially inhibit NF-κB promoter activation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Influenza virus infection activates NF-κB and is a general prerequisite for a productive influenza virus infection. On the other hand, non-structural protein 1 (NS1) suppresses this viral activated NF-κB, presumably to prevent expression of NF-κB mediated anti-viral response. NS1 proteins of influenza A viruses are divided into two groups, known as allele A and allele B. The possible functional relevance of this NS1 division to viral pathogenicity is lacking.</p> <p>Findings</p> <p>The ability of NS1 protein from two avian influenza subtypes, H6N8 and H4N6, to inhibit NF-κB promoter activation was assessed. Further, efforts were made to characterize the genetic basis of this inhibition. We found that allele A NS1 proteins of H6N8 and H4N6 are significantly better in preventing dsRNA induced NF-κB promoter activation compared to allele B of corresponding subtypes, in a species independent manner. Furthermore, the ability to suppress NF-κB promoter activation was mapped to the effector domain while the RNA binding domain alone was unable to suppress this activation. Chimeric NS1 proteins containing either RNA binding domain of allele A and effector domain of allele B or vice versa, were equally potent in preventing NF-κB promoter activation compared to their wt. NS1 protein of allele A and B from both subtypes expressed efficiently as detected by Western blotting and predominantly localized in the nucleus in both A549 and MiLu cells as shown by <it>in situ </it>PLA.</p> <p>Conclusions</p> <p>Here, we present another aspect of NS1 protein in inhibiting dsRNA induced NF-κB activation in an allele dependent manner. This suggests a possible correlation with the virus's pathogenic potential.</p

    Empirically-Informed Modal Rationalism

    Get PDF
    In this chapter, it is suggested that our epistemic access to metaphysical modality generally involves rationalist, a priori elements. However, these a priori elements are much more subtle than ‘traditional’ modal rationalism assumes. In fact, some might even question the ‘apriority’ of these elements, but I should stress that I consider a priori and a posteriori elements especially in our modal inquiry to be so deeply intertwined that it is not easy to tell them apart. Supposed metaphysically necessary identity statements involving natural kind terms are a good example: the fact that empirical input is crucial in establishing their necessity has clouded the role and content of the a priori input, as I have previously argued (Tahko forthcoming). For instance, the supposed metaphysically necessary identity statement involving water and its microstructure can only be established with the help of a controversial a priori principle concerning the determination of chemical properties by microstructure. The Kripke-Putnam framework of modal epistemology fails precisely because it is unclear whether the required a priori element is present. My positive proposal builds on E. J. Lowe’s work. Lowe holds that our knowledge of metaphysical modality is based on our knowledge of essence. Lowe’s account strives to offer a uniform picture of modal epistemology: essence is the basis of all our modal knowledge. This is the basis of Lowe’s modal rationalism. I believe that Lowe’s proposal is on the right lines in the case of abstract objects, but I doubt that it can be successfully applied to the case of natural kinds. Accordingly, the case of natural kinds will be my main focus and I will suggest that modal rationalism, at least as it is traditionally understood, falls short of explaining modal knowledge concerning natural kinds. Yet, I think that Lowe has identified something of crucial importance for modal epistemology, namely the essentialist, a priori elements present in our modal inquiry. The upshot is that rather than moving all the way from modal rationalism to modal empiricism, a type of hybrid approach, ‘empirically-informed modal rationalism’, can be developed.Peer reviewe
    corecore