793 research outputs found

    The American lifestyle-induced obesity syndrome diet in male and female rodents recapitulates the clinical and transcriptomic features of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis

    Get PDF
    The pathogenesis of nonalcoholic fatty liver disease (NAFLD) and the progression to nonalcoholic steatohepatitis (NASH) and increased risk of hepatocellular carcinoma remain poorly understood. Additionally, there is increasing recognition of the extrahepatic manifestations associated with NAFLD and NASH. We demonstrate that intervention with the American lifestyle-induced obesity syndrome (ALIOS) diet in male and female mice recapitulates many of the clinical and transcriptomic features of human NAFLD and NASH. Male and female C57BL/6N mice were fed either normal chow (NC) or ALIOS from 11 to 52 wk and underwent comprehensive metabolic analysis throughout the duration of the study. From 26 wk, ALIOS-fed mice developed features of hepatic steatosis, inflammation, and fibrosis. ALIOS-fed mice also had an increased incidence of hepatic tumors at 52 wk compared with those fed NC. Hepatic transcriptomic analysis revealed alterations in multiple genes associated with inflammation and tissue repair in ALIOS-fed mice. Ingenuity Pathway Analysis confirmed dysregulation of metabolic pathways as well as those associated with liver disease and cancer. In parallel the development of a robust hepatic phenotype, ALIOS-fed mice displayed many of the extrahepatic manifestations of NAFLD, including hyperlipidemia, increased fat mass, sarcopenia, and insulin resistance. The ALIOS diet in mice recapitulates many of the clinical features of NAFLD and, therefore, represents a robust and reproducible model for investigating the pathogenesis of NAFLD and its progression.NEW & NOTEWORTHY Nonalcoholic fatty liver disease (NAFLD) affects 30% of the general population and can progress to nonalcoholic steatohepatitis (NASH) and potentially hepatocellular carcinoma. Preclinical models rely on mouse models that often display hepatic characteristics of NAFLD but rarely progress to NASH and seldom depict the multisystem effects of the disease. We have conducted comprehensive metabolic analysis of both male and female mice consuming a Western diet of trans fats and sugar, focusing on both their hepatic phenotype and extrahepatic manifestations

    Rapid cell separation with minimal manipulation for autologous cell therapies

    Get PDF
    The ability to isolate specific, viable cell populations from mixed ensembles with minimal manipulation and within intra-operative time would provide significant advantages for autologous, cell-based therapies in regenerative medicine. Current cell-enrichment technologies are either slow, lack specificity and/or require labelling. Thus a rapid, label-free separation technology that does not affect cell functionality, viability or phenotype is highly desirable. Here, we demonstrate separation of viable from non-viable human stromal cells using remote dielectrophoresis, in which an electric field is coupled into a microfluidic channel using shear-horizontal surface acoustic waves, producing an array of virtual electrodes within the channel. This allows high-throughput dielectrophoretic cell separation in high conductivity, physiological-like fluids, overcoming the limitations of conventional dielectrophoresis. We demonstrate viable/non-viable separation efficacy of > 98% in pre-purified mesenchymal stromal cells, extracted from human dental pulp, with no adverse effects on cell viability, or on their subsequent osteogenic capabilities

    The provision of NHS health checks in a community setting: an ethnographic account

    Get PDF
    Background: The UK National Health Service Health Checks programme aims to reduce avoidable cardiovascular deaths, disability and health inequalities in England. However, due to the reported lower uptake of screening in specific black and minority ethnic communities who are recognised as being more at risk of cardiovascular disease, there are concerns that NHS Health Checks may increase inequalities in health. This study aimed to examine the feasibility and acceptability of community outreach NHS Health Checks targeted at the Afro-Caribbean community. Methods: This paper reports findings from an ethnographic study including direct observation of four outreach events in four different community venues in inner-city Bristol, England and follow up semi-structured interviews with attendees (n = 16) and staff (n = 4). Interviews and field notes were transcribed, anonymized and analysed thematically using a process of constant comparison. Results: Analysis revealed the value of community assets (community engagement workers, churches, and community centres) to publicise the event and engage community members. People were motivated to attend for preventative reasons, often prompted by familial experience of cardiovascular disease. Attendees valued outreach NHS Health Checks, reinforcing or prompting some to make healthy lifestyle changes. The NHS Health Check provided an opportunity for attendees to raise other health concerns with health staff and to discuss their test results with peers. For some participants, the communication of test results, risk and lifestyle information was confusing and unwelcome. The findings additionally highlight the need to ensure community venues are fit for purpose in terms of assuring confidentiality. Conclusions: Outreach events provide evidence of how local health partnerships (family practice staff and health trainers) and community assets, including informal networks, can enhance the delivery of outreach NHS Health Checks and in promoting the health of targeted communities. To deliver NHS Health Checks effectively, the location and timing of events needs to be carefully considered and staff need to be provided with the appropriate training to ensure patients are supported and enabled to make lifestyle changes

    FGFR1-Induced Epithelial to Mesenchymal Transition through MAPK/PLCγ/COX-2-Mediated Mechanisms

    Get PDF
    Tumour invasion and metastasis is the most common cause of death from cancer. For epithelial cells to invade surrounding tissues and metastasise, an epithelial-mesenchymal transition (EMT) is required. We have demonstrated that FGFR1 expression is increased in bladder cancer and that activation of FGFR1 induces an EMT in urothelial carcinoma (UC) cell lines. Here, we created an in vitro FGFR1-inducible model of EMT, and used this model to identify regulators of urothelial EMT. FGFR1 activation promoted EMT over a period of 72 hours. Initially a rapid increase in actin stress fibres occurred, followed by an increase in cell size, altered morphology and increased migration and invasion. By using site-directed mutagenesis and small molecule inhibitors we demonstrated that combined activation of the mitogen activated protein kinase (MAPK) and phospholipase C gamma (PLCγ) pathways regulated this EMT. Actin stress fibre formation was regulated by PLCγ activation, and was also important for the increase in cell size, migration and altered morphology. MAPK activation regulated migration and E-cadherin expression, indicating that combined activation of PLCγand MAPK is required for a full EMT. We used expression microarrays to assess changes in gene expression downstream of these signalling cascades. COX-2 was transcriptionally upregulated by FGFR1 and caused increased intracellular prostaglandin E2 levels, which promoted migration. In conclusion, we have demonstrated that FGFR1 activation in UC cells lines promotes EMT via coordinated activation of multiple signalling pathways and by promoting activation of prostaglandin synthesis

    In-depth clinical and biological exploration of DNA Damage Immune Response (DDIR) as a biomarker for oxaliplatin use in colorectal cancer

    Get PDF
    PURPOSE: The DNA Damage Immune Response (DDIR) assay was developed in breast cancer (BC) based on biology associated with deficiencies in homologous recombination and Fanconi Anemia (HR/FA) pathways. A positive DDIR call identifies patients likely to respond to platinum-based chemotherapies in breast and oesophageal cancers. In colorectal cancer (CRC) there is currently no biomarker to predict response to oxaliplatin. We tested the ability of the DDIR assay to predict response to oxaliplatin-based chemotherapy in CRC and characterised the biology in DDIR-positive CRC. METHODS: Samples and clinical data were assessed according to DDIR status from patients who received either 5FU or FOLFOX within the FOCUS trial (n=361, stage 4), or neo-adjuvant FOLFOX in the FOxTROT trial (n=97, stage 2/3). Whole transcriptome, mutation and immunohistochemistry data of these samples were used to interrogate the biology of DDIR in CRC. RESULTS: Contrary to our hypothesis, DDIR negative patients displayed a trend towards improved outcome for oxaliplatin-based chemotherapy compared to DDIR positive patients. DDIR positivity was associated with Microsatellite Instability (MSI) and Colorectal Molecular Subtype 1 (CMS1). Refinement of the DDIR signature, based on overlapping interferon-related chemokine signalling associated with DDIR positivity across CRC and BC cohorts, further confirmed that the DDIR assay did not have predictive value for oxaliplatin-based chemotherapy in CRC. CONCLUSIONS: DDIR positivity does not predict improved response following oxaliplatin treatment in CRC. However, data presented here suggests the potential of the DDIR assay in identifying immune-rich tumours that may benefit from immune checkpoint blockade, beyond current use of MSI status

    Defining Medical Futility and Improving Medical Care

    Get PDF
    It probably should not be surprising, in this time of soaring medical costs and proliferating technology, that an intense debate has arisen over the concept of medical futility. Should doctors be doing all the things they are doing? In particular, should they be attempting treatments that have little likelihood of achieving the goals of medicine? What are the goals of medicine? Can we agree when medical treatment fails to achieve such goals? What should the physician do and not do under such circumstances? Exploring these issues has forced us to revisit the doctor-patient relationship and the relationship of the medical profession to society in a most fundamental way. Medical futility has both a quantitative and qualitative component. I maintain that medical futility is the unacceptable likelihood of achieving an effect that the patient has the capacity to appreciate as a benefit. Both emphasized terms are important. A patient is neither a collection of organs nor merely an individual with desires. Rather, a patient (from the word “to suffer”) is a person who seeks the healing (meaning “to make whole”) powers of the physician. The relationship between the two is central to the healing process and the goals of medicine. Medicine today has the capacity to achieve a multitude of effects, raising and lowering blood pressure, speeding, slowing, and even removing and replacing the heart, to name but a minuscule few. But none of these effects is a benefit unless the patient has at the very least the capacity to appreciate it. Sadly, in the futility debate wherein some critics have failed or refused to define medical futility an important area of medicine has in large part been neglected, not only in treatment decisions at the bedside, but in public discussions—comfort care—the physician’s obligation to alleviate suffering, enhance well being and support the dignity of the patient in the last few days of life

    Assessing pathogenicity of MLH1 variants by co-expression of human MLH1 and PMS2 genes in yeast

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Loss of DNA mismatch repair (MMR) in humans, mainly due to mutations in the <it>hMLH1 </it>gene, is linked to hereditary nonpolyposis colorectal cancer (HNPCC). Because not all <it>MLH1 </it>alterations result in loss of MMR function, accurate characterization of variants and their classification in terms of their effect on MMR function is essential for reliable genetic testing and effective treatment. To date, <it>in vivo </it>assays for functional characterization of <it>MLH1 </it>mutations performed in various model systems have used episomal expression of the modified MMR genes. We describe here a novel approach to determine accurately the functional significance of <it>hMLH1 </it>mutations <it>in vivo</it>, based on co-expression of human MLH1 and PMS2 in yeast cells.</p> <p>Methods</p> <p>Yeast <it>MLH1 </it>and <it>PMS1 </it>genes, whose protein products form the MutLα complex, were replaced by human orthologs directly on yeast chromosomes by homologous recombination, and the resulting MMR activity was tested.</p> <p>Results</p> <p>The yeast strain co-expressing hMLH1 and hPMS2 exhibited the same mutation rate as the wild-type. Eight cancer-related <it>MLH1 </it>variants were introduced, using the same approach, into the prepared yeast model, and their effect on MMR function was determined. Five variants (A92P, S93G, I219V, K618R and K618T) were classified as non-pathogenic, whereas variants T117M, Y646C and R659Q were characterized as pathogenic.</p> <p>Conclusion</p> <p>Results of our <it>in vivo </it>yeast-based approach correlate well with clinical data in five out of seven hMLH1 variants and the described model was thus shown to be useful for functional characterization of <it>MLH1 </it>variants in cancer patients found throughout the entire coding region of the gene.</p

    Caretaker Brca1: keeping the genome in the straight and narrow

    Get PDF
    Inheritance of germline BRCA1 mutations is associated with a high risk of breast and ovarian cancers. A multitude of cellular functions has been ascribed to BRCA1, including transcription activation and various aspects of DNA repair. So far, indirect evidence has indicated a role for BRCA1 in the repair of double-strand breaks. Recently, an elegant gene targeting design was used to provide definitive evidence that BRCA1 promotes homologous recombination and limits nonhomologous mutagenic repair processes. This reaffirms the role of BRCA1 as caretaker in preserving genomic integrity
    corecore