94 research outputs found

    Psychopolitics: Peter Sedgwick’s legacy for mental health movements

    Get PDF
    This paper re-considers the relevance of Peter Sedgwick's Psychopolitics (1982) for a politics of mental health. Psychopolitics offered an indictment of ‘anti-psychiatry’ the failure of which, Sedgwick argued, lay in its deconstruction of the category of ‘mental illness’, a gesture that resulted in a politics of nihilism. ‘The radical who is only a radical nihilist’, Sedgwick observed, ‘is for all practical purposes the most adamant of conservatives’. Sedgwick argued, rather, that the concept of ‘mental illness’ could be a truly critical concept if it was deployed ‘to make demands upon the health service facilities of the society in which we live’. The paper contextualizes Psychopolitics within the ‘crisis tendencies’ of its time, surveying the shifting welfare landscape of the subsequent 25 years alongside Sedgwick's continuing relevance. It considers the dilemma that the discourse of ‘mental illness’ – Sedgwick's critical concept – has fallen out of favour with radical mental health movements yet remains paradigmatic within psychiatry itself. Finally, the paper endorses a contemporary perspective that, while necessarily updating Psychopolitics, remains nonetheless ‘Sedgwickian’

    Fracture-fill calcite as a record of microbial methanogenesis and fluid migration: a case study from the Devonian Antrim Shale, Michigan Basin

    Full text link
    The Devonian Antrim Shale is an organic-rich, naturally fractured black shale in the Michigan Basin that serves as both a source and reservoir for natural gas. A well-developed network of major, through-going vertical fractures controls reservoir-scale permeability in the Antrim Shale. Many fractures are open, but some are partially sealed by calcite cements that retain isotopic evidence of widespread microbial methanogenesis. Fracture filling calcite displays an unusually broad spectrum of δ 13 C values (+34 to −41‰ PDB), suggesting that both aerobic and anaerobic bacterial processes were active in the reservoir. Calcites with high δ 13 C values (>+15‰) record cementation of fractures from dissolved inorganic carbon (DIC) generated during bacterial methanogenesis. Calcites with low δ 13 C values (<−32‰) are solely associated with outcrop samples and record methane oxidation during cement precipitation. Fracture-fill calcite with δ 13 C values between −10 and −30‰ can be attributed to variable organic matter oxidation pathways, methane oxidation, and carbonate rock buffering. Identification of 13 C-rich calcite provides unambiguous evidence of biogenic methane generation and may be used to identify gas deposits in other sedimentary basins. It is likely that repeated glacial advances and retreats exposed the Antrim Shale at the basin margin, enhanced meteoric recharge into the shallow part of the fractured reservoir, and initiated multiple episodes of bacterial methanogenesis and methanotrophic activity that were recorded in fracture-fill cements. The δ 18 O values in both formation waters and calcite cements increase with depth in the basin (−12 to −4‰ SMOW, and +21 to +27‰ PDB, respectively). Most fracture-fill cements from outcrop samples have δ 13 C values between −41 and −15‰ PDB. In contrast, most cement in cores have δ 13 C values between +15 and +34‰ PDB. Radiocarbon and 230 Th dating of fracture-fill calcite indicates that the calcite formed between 33 and 390 ka, well within the Pleistocene Epoch.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75720/1/j.1468-8123.2002.00036.x.pd

    Coexistence of metallic and nonmetallic properties in the pyrochlore Lu2Rh2O7

    Get PDF
    Transition metal oxides of the 4d4d and 5d5d block have recently become the targets of materials discovery, largely due to their strong spin-orbit coupling that can generate exotic magnetic and electronic states. Here we report the high pressure synthesis of Lu2_2Rh2_2O7_7, a new cubic pyrochlore oxide based on 4d54d^5 Rh4+^{4+} and characterizations via thermodynamic, electrical transport, and muon spin relaxation measurements. Magnetic susceptibility measurements reveal a large temperature-independent Pauli paramagnetic contribution, while heat capacity shows an enhanced Sommerfeld coefficient, γ\gamma = 21.8(1) mJ/mol-Rh K2^2. Muon spin relaxation measurements confirm that Lu2_2Rh2_2O7_7 remains paramagnetic down to 2 K. Taken in combination, these three measurements suggest that Lu2_2Rh2_2O7_7 is a correlated paramagnetic metal with a Wilson ratio of RW=2.5R_W = 2.5. However, electric transport measurements present a striking contradiction as the resistivity of Lu2_2Rh2_2O7_7 is observed to monotonically increase with decreasing temperature, indicative of a nonmetallic state. Furthermore, although the magnitude of the resistivity is that of a semiconductor, the temperature dependence does not obey any conventional form. Thus, we propose that Lu2_2Rh2_2O7_7 may belong to the same novel class of non-Fermi liquids as the nonmetallic metal FeCrAs.Comment: 11 pages, 5 figure

    Genomic analysis of Acidianus hospitalis W1 a host for studying crenarchaeal virus and plasmid life cycles

    Get PDF
    The Acidianus hospitalis W1 genome consists of a minimally sized chromosome of about 2.13 Mb and a conjugative plasmid pAH1 and it is a host for the model filamentous lipothrixvirus AFV1. The chromosome carries three putative replication origins in conserved genomic regions and two large regions where non-essential genes are clustered. Within these variable regions, a few orphan orfB and other elements of the IS200/607/605 family are concentrated with a novel class of MITE-like repeat elements. There are also 26 highly diverse vapBC antitoxin–toxin gene pairs proposed to facilitate maintenance of local chromosomal regions and to minimise the impact of environmental stress. Complex and partially defective CRISPR/Cas/Cmr immune systems are present and interspersed with five vapBC gene pairs. Remnants of integrated viral genomes and plasmids are located at five intron-less tRNA genes and several non-coding RNA genes are predicted that are conserved in other Sulfolobus genomes. The putative metabolic pathways for sulphur metabolism show some significant differences from those proposed for other Acidianus and Sulfolobus species. The small and relatively stable genome of A. hospitalis W1 renders it a promising candidate for developing the first Acidianus genetic systems

    Amyloid Triggers Extensive Cerebral Angiogenesis Causing Blood Brain Barrier Permeability and Hypervascularity in Alzheimer's Disease

    Get PDF
    Evidence of reduced blood-brain barrier (BBB) integrity preceding other Alzheimer's disease (AD) pathology provides a strong link between cerebrovascular angiopathy and AD. However, the “Vascular hypothesis”, holds that BBB leakiness in AD is likely due to hypoxia and neuroinflammation leading to vascular deterioration and apoptosis. We propose an alternative hypothesis: amyloidogenesis promotes extensive neoangiogenesis leading to increased vascular permeability and subsequent hypervascularization in AD. Cerebrovascular integrity was characterized in Tg2576 AD model mice that overexpress the human amyloid precursor protein (APP) containing the double missense mutations, APPsw, found in a Swedish family, that causes early-onset AD. The expression of tight junction (TJ) proteins, occludin and ZO-1, were examined in conjunction with markers of apoptosis and angiogenesis. In aged Tg2576 AD mice, a significant increase in the incidence of disrupted TJs, compared to age matched wild-type littermates and young mice of both genotypes, was directly linked to an increased microvascular density but not apoptosis, which strongly supports amyloidogenic triggered hypervascularity as the basis for BBB disruption. Hypervascularity in human patients was corroborated in a comparison of postmortem brain tissues from AD and controls. Our results demonstrate that amylodogenesis mediates BBB disruption and leakiness through promoting neoangiogenesis and hypervascularity, resulting in the redistribution of TJs that maintain the barrier and thus, provides a new paradigm for integrating vascular remodeling with the pathophysiology observed in AD. Thus the extensive angiogenesis identified in AD brain, exhibits parallels to the neovascularity evident in the pathophysiology of other diseases such as age-related macular degeneration

    Targeting the hypoxic fraction of tumours using hypoxia activated prodrugs

    Get PDF
    The presence of a microenvironment within most tumours containing regions of low oxygen tension or hypoxia has profound biological and therapeutic implications. Tumour hypoxia is known to promote the development of an aggressive phenotype, resistance to both chemotherapy and radiotherapy and is strongly associated with poor clinical outcome. Paradoxically, it is recognised as a high priority target and one therapeutic strategies designed to eradicate hypoxic cells in tumours are a group of compounds known collectively as hypoxia activated prodrugs (HAPs) or bioreductive drugs. These drugs are inactive prodrugs that require enzymatic activation (typically by 1 or 2 electron oxidoreductases) to generate cytotoxic species with selectivity for hypoxic cells being determined by (i) the ability of oxygen to either reverse or inhibit the activation process and (ii) the presence of elevated expression of oxidoreductases in tumours. The concepts underpinning HAP development were established over 40 years ago and have been refined over the years to produce a new generation of HAPs that are under preclinical and clinical development. The purpose of this article is to describe current progress in the development of HAPs focusing on the mechanisms of action, preclinical properties and clinical progress of leading examples

    A second generation human haplotype map of over 3.1 million SNPs

    Full text link
    We describe the Phase II HapMap, which characterizes over 3.1 million human single nucleotide polymorphisms (SNPs) genotyped in 270 individuals from four geographically diverse populations and includes 25-35% of common SNP variation in the populations surveyed. The map is estimated to capture untyped common variation with an average maximum r(2) of between 0.9 and 0.96 depending on population. We demonstrate that the current generation of commercial genome-wide genotyping products captures common Phase II SNPs with an average maximum r(2) of up to 0.8 in African and up to 0.95 in non-African populations, and that potential gains in power in association studies can be obtained through imputation. These data also reveal novel aspects of the structure of linkage disequilibrium. We show that 10-30% of pairs of individuals within a population share at least one region of extended genetic identity arising from recent ancestry and that up to 1% of all common variants are untaggable, primarily because they lie within recombination hotspots. We show that recombination rates vary systematically around genes and between genes of different function. Finally, we demonstrate increased differentiation at non-synonymous, compared to synonymous, SNPs, resulting from systematic differences in the strength or efficacy of natural selection between populations.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62863/1/nature06258.pd

    Advances in structure elucidation of small molecules using mass spectrometry

    Get PDF
    The structural elucidation of small molecules using mass spectrometry plays an important role in modern life sciences and bioanalytical approaches. This review covers different soft and hard ionization techniques and figures of merit for modern mass spectrometers, such as mass resolving power, mass accuracy, isotopic abundance accuracy, accurate mass multiple-stage MS(n) capability, as well as hybrid mass spectrometric and orthogonal chromatographic approaches. The latter part discusses mass spectral data handling strategies, which includes background and noise subtraction, adduct formation and detection, charge state determination, accurate mass measurements, elemental composition determinations, and complex data-dependent setups with ion maps and ion trees. The importance of mass spectral library search algorithms for tandem mass spectra and multiple-stage MS(n) mass spectra as well as mass spectral tree libraries that combine multiple-stage mass spectra are outlined. The successive chapter discusses mass spectral fragmentation pathways, biotransformation reactions and drug metabolism studies, the mass spectral simulation and generation of in silico mass spectra, expert systems for mass spectral interpretation, and the use of computational chemistry to explain gas-phase phenomena. A single chapter discusses data handling for hyphenated approaches including mass spectral deconvolution for clean mass spectra, cheminformatics approaches and structure retention relationships, and retention index predictions for gas and liquid chromatography. The last section reviews the current state of electronic data sharing of mass spectra and discusses the importance of software development for the advancement of structure elucidation of small molecules

    Self-sharpening induces jet-like structure in seafloor gravity currents

    Get PDF
    Gravity currents are the primary means by which sediments, solutes and heat are transported across the ocean-floor. Existing theory of gravity current flow employs a statistically-stable model of turbulent diffusion that has been extant since the 1960s. Here we present the first set of detailed spatial data from a gravity current over a rough seafloor that demonstrate that this existing paradigm is not universal. Specifically, in contrast to predictions from turbulent diffusion theory, self-sharpened velocity and concentration profiles and a stable barrier to mixing are observed. Our new observations are explained by statistically-unstable mixing and self-sharpening, by boundary-induced internal gravity waves; as predicted by recent advances in fluid dynamics. Self-sharpening helps explain phenomena such as ultra-long runout of gravity currents and restricted growth of bedforms, and highlights increased geohazard risk to marine infrastructure. These processes likely have broader application, for example to wave-turbulence interaction, and mixing processes in environmental flows

    What’s wrong with evolutionary biology?

    Get PDF
    There have been periodic claims that evolutionary biology needs urgent reform, and this article tries to account for the volume and persistence of this discontent. It is argued that a few inescapable properties of the field make it prone to criticisms of predictable kinds, whether or not the criticisms have any merit. For example, the variety of living things and the complexity of evolution make it easy to generate data that seem revolutionary (e.g. exceptions to well-established generalizations, or neglected factors in evolution), and lead to disappointment with existing explanatory frameworks (with their high levels of abstraction, and limited predictive power). It is then argued that special discontent stems from misunderstandings and dislike of one well-known but atypical research programme: the study of adaptive function, in the tradition of behavioural ecology. To achieve its goals, this research needs distinct tools, often including imaginary agency, and a partial description of the evolutionary process. This invites mistaken charges of narrowness and oversimplification (which come, not least, from researchers in other subfields), and these chime with anxieties about human agency and overall purpose. The article ends by discussing several ways in which calls to reform evolutionary biology actively hinder progress in the field
    corecore