502 research outputs found

    Effect of Neem Oil on Sperm Mitochondrial Activity

    Get PDF
    It is a known fact that neem oil has some effect on motility of sperm. Motility of sperm depends on mitochondrial activity present in mid-piece of sperm. In the present study, the mitochondrial activity of sperm was evaluated after treating semen with the different quantities of neem oil. The mitochondrial activity was also evaluated after subjecting the semen samples for different incubation periods keeping the quantity of semen as well as that of neem oil same. Tests were done on thirty normozoospermic semen samples with motile score more than 75%. It was found that as the quantity of neem oil increases, the mitochondrial activity decreases significantly (P < 0.001). Similar results were found, when same quantity of neem oil was treated with same quantity of semen, but incubating for different time durations. The mitochondrial activity decreases significantly (P < 0.001) from one minute to twenty minutes. So, it indicates that as the contact period between neem oil and semen increases the mitochondrial activity decreases significantl

    Investigation of aerosol indirect effects on monsoon clouds using ground-based measurements over a high-altitude site in Western Ghats

    Get PDF
    The effect of aerosols on cloud droplet number concentration and droplet effective radius is investigated from ground-based measurements over a high-altitude site where clouds pass over the surface. First aerosol indirect effect (AIE) estimates were made using (i) relative changes in cloud droplet number concentration (AIEn) and (ii) relative changes in droplet effective radius (AIEs) with relative changes in aerosol for different cloud liquid water contents (LWCs). AIE estimates from two different methods reveal that there is systematic overestimation in AIEn as compared to that of AIEs. Aerosol indirect effects (AIEn and AIEs) and dispersion effect (DE) at different LWC regimes ranging from 0.05 to 0.50 g m−3 were estimated. The analysis demonstrates that there is overestimation of AIEn as compared to AIEs, which is mainly due to DE. Aerosol effects on spectral dispersion in droplet size distribution play an important role in altering Twomey's cooling effect and thereby changes in climate. This study shows that the higher DE in the medium LWC regime offsets the AIE by 30 %

    Industrial Systems Biology of Saccharomyces cerevisiae Enables Novel Succinic Acid Cell Factory.

    Get PDF
    Saccharomyces cerevisiae is the most well characterized eukaryote, the preferred microbial cell factory for the largest industrial biotechnology product (bioethanol), and a robust commerically compatible scaffold to be exploitted for diverse chemical production. Succinic acid is a highly sought after added-value chemical for which there is no native pre-disposition for production and accmulation in S. cerevisiae. The genome-scale metabolic network reconstruction of S. cerevisiae enabled in silico gene deletion predictions using an evolutionary programming method to couple biomass and succinate production. Glycine and serine, both essential amino acids required for biomass formation, are formed from both glycolytic and TCA cycle intermediates. Succinate formation results from the isocitrate lyase catalyzed conversion of isocitrate, and from the alpha-keto-glutarate dehydrogenase catalyzed conversion of alpha-keto-glutarate. Succinate is subsequently depleted by the succinate dehydrogenase complex. The metabolic engineering strategy identified included deletion of the primary succinate consuming reaction, Sdh3p, and interruption of glycolysis derived serine by deletion of 3-phosphoglycerate dehydrogenase, Ser3p/Ser33p. Pursuing these targets, a multi-gene deletion strain was constructed, and directed evolution with selection used to identify a succinate producing mutant. Physiological characterization coupled with integrated data analysis of transcriptome data in the metabolically engineered strain were used to identify 2nd-round metabolic engineering targets. The resulting strain represents a 30-fold improvement in succinate titer, and a 43-fold improvement in succinate yield on biomass, with only a 2.8-fold decrease in the specific growth rate compared to the reference strain. Intuitive genetic targets for either over-expression or interruption of succinate producing or consuming pathways, respectively, do not lead to increased succinate. Rather, we demonstrate how systems biology tools coupled with directed evolution and selection allows non-intuitive, rapid and substantial re-direction of carbon fluxes in S. cerevisiae, and hence show proof of concept that this is a potentially attractive cell factory for over-producing different platform chemicals

    Microstructural and Mössbauer properties of low temperature synthesized Ni-Cd-Al ferrite nanoparticles

    Get PDF
    We report the influence of Al3+ doping on the microstructural and Mössbauer properties of ferrite nanoparticles of basic composition Ni0.2Cd0.3Fe2.5 - xAlxO4 (0.0 ≤ x ≤ 0.5) prepared through simple sol-gel method. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray, transmission electron microscopy (TEM), Fourier transformation infrared (FTIR), and Mössbauer spectroscopy techniques were used to investigate the structural, chemical, and Mössbauer properties of the grown nanoparticles. XRD results confirm that all the samples are single-phase cubic spinel in structure excluding the presence of any secondary phase corresponding to any structure. SEM micrographs show the synthesized nanoparticles are agglomerated but spherical in shape. The average crystallite size of the grown nanoparticles was calculated through Scherrer formula and confirmed by TEM and was found between 2 and 8 nm (± 1). FTIR results show the presence of two vibrational bands corresponding to tetrahedral and octahedral sites. Mössbauer spectroscopy shows that all the samples exhibit superparamagnetism, and the quadrupole interaction increases with the substitution of Al3+ ions

    A randomised, controlled crossover comparison of the C-MAC videolaryngoscope with direct laryngoscopy in 150 patients during routine induction of anaesthesia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The C-MAC<sup>® </sup>(Karl Storz, Tuttlingen, Germany) has recently been introduced as a new device for videolaryngoscopy guided intubation. The purpose of the present study was to compare for the first time the C-MAC with conventional direct laryngoscopy in 150 patients during routine induction of anaesthesia.</p> <p>Methods</p> <p>After approval of the institutional review board and written informed consent, 150 patients (ASA I-III) with general anaesthesia were enrolled. Computer-based open crossover randomisation was used to determine the sequence of the three laryngoscopies: Conventional direct laryngoscopy (HEINE Macintosh classic, Herrsching, Germany; blade sizes 3 or 4; <it>DL </it>group), C-MAC size 3 (<it>C-MAC3 </it>group) and C-MAC size 4 (<it>C-MAC4 </it>group) videolaryngoscopy, respectively. After 50 patients, laryngoscopy technique in the C-MAC4 group was changed to the straight blade technique described by Miller (C-MAC4/SBT).</p> <p>Results</p> <p>Including all 150 patients (70 male, aged (median [range]) 53 [20-82] years, 80 [48-179] kg), there was no difference of glottic view between DL, C-MAC3, C-MAC4, and C-MAC4/SBT groups; however, worst glottic view (C/L 4) was only seen with DL, but not with C-MAC videolaryngoscopy. In the subgroup of patients that had suboptimal glottic view with DL (C/L≥2a; n = 24), glottic view was improved in the C-MAC4/SBT group; C/L class improved by three classes in 5 patients, by two classes in 2 patients, by one class in 8 patients, remained unchanged in 8 patients, or decreased by two classes in 1 patient. The median (range) time taken for tracheal intubation in the DL, C-MAC3, C-MAC4 and C-MAC4/SBT groups was 8 sec (2-91 sec; n = 44), 10 sec (2-60 sec; n = 37), 8 sec (5-80 sec; n = 18) and 12 sec (2-70 sec; n = 51), respectively.</p> <p>Conclusions</p> <p>Combining the benefits of conventional direct laryngoscopy and videolaryngoscopy in one device, the C-MAC may serve as a standard intubation device for both routine airway management and educational purposes. However, in patients with suboptimal glottic view (C/L≥2a), the C-MAC size 4 with straight blade technique may reduce the number of C/L 3 or C/L 4 views, and therefore facilitate intubation. Further studies on patients with difficult airway should be performed to confirm these findings.</p

    Diagnostic delay for giant cell arteritis – a systematic review and meta-analysis

    Get PDF
    Background Giant cell arteritis (GCA), if untreated, can lead to blindness and stroke. The study’s objectives were to (1) determine a new evidence-based benchmark of the extent of diagnostic delay for GCA and (2) examine the role of GCA-specific characteristics on diagnostic delay. Methods Medical literature databases were searched from inception to November 2015. Articles were included if reporting a time-period of diagnostic delay between onset of GCA symptoms and diagnosis. Two reviewers assessed the quality of the final articles and extracted data from these. Random-effects meta-analysis was used to pool the mean time-period (95% confidence interval (CI)) between GCA symptom onset and diagnosis, and the delay observed for GCA-specific characteristics. Heterogeneity was assessed by I 2 and by 95% prediction interval (PI). Results Of 4128 articles initially identified, 16 provided data for meta-analysis. Mean diagnostic delay was 9.0 weeks (95% CI, 6.5 to 11.4) between symptom onset and GCA diagnosis (I 2 = 96.0%; P < 0.001; 95% PI, 0 to 19.2 weeks). Patients with a cranial presentation of GCA received a diagnosis after 7.7 (95% CI, 2.7 to 12.8) weeks (I 2 = 98.4%; P < 0.001; 95% PI, 0 to 27.6 weeks) and those with non-cranial GCA after 17.6 (95% CI, 9.7 to 25.5) weeks (I 2 = 96.6%; P < 0.001; 95% PI, 0 to 46.1 weeks). Conclusions The mean delay from symptom onset to GCA diagnosis was 9 weeks, or longer when cranial symptoms were absent. Our research provides an evidence-based benchmark for diagnostic delay of GCA and supports the need for improved public awareness and fast-track diagnostic pathways

    Multiple ATR-Chk1 Pathway Proteins Preferentially Associate with Checkpoint-Inducing DNA Substrates

    Get PDF
    The ATR-Chk1 DNA damage checkpoint pathway is a critical regulator of the cellular response to DNA damage and replication stress in human cells. The variety of environmental, chemotherapeutic, and carcinogenic agents that activate this signal transduction pathway do so primarily through the formation of bulky adducts in DNA and subsequent effects on DNA replication fork progression. Because there are many protein-protein and protein-DNA interactions proposed to be involved in activation and/or maintenance of ATR-Chk1 signaling in vivo, we systematically analyzed the association of a number of ATR-Chk1 pathway proteins with relevant checkpoint-inducing DNA structures in vitro. These DNA substrates included single-stranded DNA, branched DNA, and bulky adduct-containing DNA. We found that many checkpoint proteins show a preference for single-stranded, branched, and bulky adduct-containing DNA in comparison to undamaged, double-stranded DNA. We additionally found that the association of checkpoint proteins with bulky DNA damage relative to undamaged DNA was strongly influenced by the ionic strength of the binding reaction. Interestingly, among the checkpoint proteins analyzed the checkpoint mediator proteins Tipin and Claspin showed the greatest differential affinity for checkpoint-inducing DNA structures. We conclude that the association and accumulation of multiple checkpoint proteins with DNA structures indicative of DNA damage and replication stress likely contribute to optimal ATR-Chk1 DNA damage checkpoint responses

    The Intrinsic Resolution Limit in the Atomic Force Microscope: Implications for Heights of Nano-Scale Features

    Get PDF
    Background; Accurate mechanical characterization by the atomic force microscope at the highest spatial resolution requires that topography is deconvoluted from indentation. The measured height of nanoscale features in the atomic force microscope (AFM) is almost always smaller than the true value, which is often explained away as sample deformation, the formation of salt deposits and/or dehydration. We show that the real height of nano-objects cannot be obtained directly: a result arising as a consequence of the local probe-sample geometry. Methods and Findings; We have modeled the tip-surface-sample interaction as the sum of the interaction between the tip and the surface and the tip and the sample. We find that the dynamics of the AFM cannot differentiate between differences in force resulting from 1) the chemical and/or mechanical characteristics of the surface or 2) a step in topography due to the size of the sample; once the size of a feature becomes smaller than the effective area of interaction between the AFM tip and sample, the measured height is compromised. This general result is a major contributor to loss of height and can amount to up to ∼90% for nanoscale features. In particular, these very large values in height loss may occur even when there is no sample deformation, and, more generally, height loss does not correlate with sample deformation. DNA and IgG antibodies have been used as model samples where experimental height measurements are shown to closely match the predicted phenomena. Conclusions; Being able to measure the true height of single nanoscale features is paramount in many nanotechnology applications since phenomena and properties in the nanoscale critically depend on dimensions. Our approach allows accurate predictions for the true height of nanoscale objects and will lead to reliable mechanical characterization at the highest spatial resolution

    PECAM-Independent Thioglycollate Peritonitis Is Associated With a Locus on Murine Chromosome 2

    Get PDF
    Background: Previous studies have demonstrated that knockout or inhibition of Platelet/Endothelial Cell Adhesion Molecule (PECAM, CD31) in a number of murine strains results in impaired inflammatory responses, but that no such phenotype is seen in the C57BL/6 (B6) murine background. Methodology/Principal Findings: We have undertaken a quantitative trait locus (QTL) mapping effort between FVB/n (FVB) and B6 mice deficient for PECAM to identify the gene or genes responsible for this unique feature of B6 mice. We have identified a locus on murine chromosome 2 at approximately 35.8 Mb that is strongly associated (LOD score = 9.0) with inflammatory responses in the absence of PECAM. Conclusions/Significance: These data potentiate further study of the diapedesis machinery, as well as potential identification of new components of this machinery. As such, this study is an important step to better understanding the processes of inflammation

    The Complete Spectrum of Yeast Chromosome Instability Genes Identifies Candidate CIN Cancer Genes and Functional Roles for ASTRA Complex Components

    Get PDF
    Chromosome instability (CIN) is observed in most solid tumors and is linked to somatic mutations in genome integrity maintenance genes. The spectrum of mutations that cause CIN is only partly known and it is not possible to predict a priori all pathways whose disruption might lead to CIN. To address this issue, we generated a catalogue of CIN genes and pathways by screening ∼2,000 reduction-of-function alleles for 90% of essential genes in Saccharomyces cerevisiae. Integrating this with published CIN phenotypes for other yeast genes generated a systematic CIN gene dataset comprised of 692 genes. Enriched gene ontology terms defined cellular CIN pathways that, together with sequence orthologs, created a list of human CIN candidate genes, which we cross-referenced to published somatic mutation databases revealing hundreds of mutated CIN candidate genes. Characterization of some poorly characterized CIN genes revealed short telomeres in mutants of the ASTRA/TTT components TTI1 and ASA1. High-throughput phenotypic profiling links ASA1 to TTT (Tel2-Tti1-Tti2) complex function and to TORC1 signaling via Tor1p stability, consistent with the role of TTT in PI3-kinase related kinase biogenesis. The comprehensive CIN gene list presented here in principle comprises all conserved eukaryotic genome integrity pathways. Deriving human CIN candidate genes from the list allows direct cross-referencing with tumor mutational data and thus candidate mutations potentially driving CIN in tumors. Overall, the CIN gene spectrum reveals new chromosome biology and will help us to understand CIN phenotypes in human disease
    corecore