15 research outputs found

    Atherosclerotic renal artery stenosis is prevalent in cardiorenal patients but not associated with left ventricular function and myocardial fibrosis as assessed by cardiac magnetic resonance imaging

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Atherosclerotic renal artery stenosis (ARAS) is common in cardiovascular diseases and associated with hypertension, renal dysfunction and/or heart failure. There is a paucity of data about the prevalence and the role of ARAS in the pathophysiology of combined chronic heart failure (CHF) and chronic kidney disease (CKD). We investigated the prevalence in patients with combined CHF/CKD and its association with renal function, cardiac dysfunction and the presence and extent of myocardial fibrosis.</p> <p>Methods</p> <p>The EPOCARES study (ClinTrialsNCT00356733) investigates the role of erythropoietin in anaemic patients with combined CHF/CKD. Eligible subjects underwent combined cardiac magnetic resonance imaging (cMRI), including late gadolinium enhancement, with magnetic resonance angiography of the renal arteries (MRA).</p> <p>Results</p> <p>MR study was performed in 37 patients (median age 74 years, eGFR 37.4 ± 15.6 ml/min, left ventricular ejection fraction (LVEF) 43.3 ± 11.2%), of which 21 (56.8%) had ARAS (defined as stenosis >50%). Of these 21 subjects, 8 (21.6%) had more severe ARAS >70% and 8 (21.6%) had a bilateral ARAS >50% (or previous bilateral PTA). There were no differences in age, NT-proBNP levels and medication profile between patients with ARAS versus those without. Renal function declined with the severity of ARAS (p = 0.03), although this was not significantly different between patients with ARAS versus those without. Diabetes mellitus was more prevalent in patients without ARAS (56.3%) against those with ARAS (23.8%) (p = 0.04). The presence and extent of late gadolinium enhancement, depicting myocardial fibrosis, did not differ (p = 0.80), nor did end diastolic volume (p = 0.60), left ventricular mass index (p = 0.11) or LVEF (p = 0.15). Neither was there a difference in the presence of an ischemic pattern of late enhancement in patients with ARAS versus those without.</p> <p>Conclusions</p> <p>ARAS is prevalent in combined CHF/CKD and its severity is associated with a decline in renal function. However, its presence does not correlate with a worse LVEF, a higher left ventricular mass or with the presence and extent of myocardial fibrosis. Further research is required for the role of ARAS in the pathophysiology of combined chronic heart and renal failure.</p

    Recurrent network dynamics reconciles visual motion segmentation and integration

    Get PDF
    In sensory systems, a range of computational rules are presumed to be implemented by neuronal subpopulations with different tuning functions. For instance, in primate cortical area MT, different classes of direction-selective cells have been identified and related either to motion integration, segmentation or transparency. Still, how such different tuning properties are constructed is unclear. The dominant theoretical viewpoint based on ï»ża linear-nonlinear feed-forward cascade does not account for their complex temporal dynamics and their versatility when facing different input statistics. Here, we demonstrate that a recurrent network model of visual motion processing can reconcile these different properties. Using a ring network, we show how excitatory and inhibitory interactions can implement different computational rules such as vector averaging, winner-take-all or superposition. The model also captures ordered temporal transitions between these behaviors. In particular, depending on the inhibition regime the network can switch from motion integration to segmentation, thus being able to compute either a single pattern motion or to superpose multiple inputs as in motion transparency. We thus demonstrate that recurrent architectures can adaptively give rise to different cortical computational regimes depending upon the input statistics, from sensory flow integration to segmentation

    Blockade of the Renin-Angiotensin system in hypertensive patients with atherosclerotic renal artery stenosis.

    No full text
    Renin angiotensin system (RAS) blockers are generally considered as contraindicated when an atheromatous renal artery stenosis (ARAS) is diagnosed. The main reason is the fear of inducing renal ischemia and, hence, accelerating renal fibrosis and the progression towards end stage renal disease, albeit RAS blocker have been shown to be highly effective in controlling blood pressure. Part of the solution came by the development of the revascularization. There is now growing evidence showing no superiority of angioplasty over medical treatment on cardiovascular events and mortality, renal function and blood pressure control. Hence, RAS blockers resurfaced based on their proven beneficial effects on blood pressure control and cardiovascular prevention in high risk atherosclerotic patients. Thus, RAS blockers belong today to the standard treatment of hypertensive patients with ARAS. However they were not systematically prescribed in trials focusing on ARAS. The ongoing CORAL trial will give us further information on the place of this class of antihypertensive drugs in patients with ARAS
    corecore