36 research outputs found

    Animal Interactions and the Emergence of Territoriality

    Get PDF
    Inferring the role of interactions in territorial animals relies upon accurate recordings of the behaviour of neighbouring individuals. Such accurate recordings are rarely available from field studies. As a result, quantification of the interaction mechanisms has often relied upon theoretical approaches, which hitherto have been limited to comparisons of macroscopic population-level predictions from un-tested interaction models. Here we present a quantitative framework that possesses a microscopic testable hypothesis on the mechanism of conspecific avoidance mediated by olfactory signals in the form of scent marks. We find that the key parameters controlling territoriality are two: the average territory size, i.e. the inverse of the population density, and the time span during which animal scent marks remain active. Since permanent monitoring of a territorial border is not possible, scent marks need to function in the temporary absence of the resident. As chemical signals carried by the scent only last a finite amount of time, each animal needs to revisit territorial boundaries frequently and refresh its own scent marks in order to deter possible intruders. The size of the territory an animal can maintain is thus proportional to the time necessary for an animal to move between its own territorial boundaries. By using an agent-based model to take into account the possible spatio-temporal movement trajectories of individual animals, we show that the emerging territories are the result of a form of collective animal movement where, different to shoaling, flocking or herding, interactions are highly heterogeneous in space and time. The applicability of our hypothesis has been tested with a prototypical territorial animal, the red fox (Vulpes vulpes)

    Dietary Deficiency of Essential Amino Acids Rapidly Induces Cessation of the Rat Estrous Cycle

    Get PDF
    Reproductive functions are regulated by the sophisticated coordination between the neuronal and endocrine systems and are sustained by a proper nutritional environment. Female reproductive function is vulnerable to effects from dietary restrictions, suggesting a transient adaptation that prioritizes individual survival over reproduction until a possible future opportunity for satiation. This adaptation could also partially explain the existence of amenorrhea in women with anorexia nervosa. Because amino acid nutritional conditions other than caloric restriction uniquely alters amino acid metabolism and affect the hormonal levels of organisms, we hypothesized that the supply of essential amino acids in the diet plays a pivotal role in the maintenance of the female reproductive system. To test this hypothesis, we examined ovulatory cyclicity in female rats under diets that were deficient in threonine, lysine, tryptophan, methionine or valine. Ovulatory cyclicity was monitored by daily cytological evaluations of vaginal smears. After continuous feeding of the deficient diet, a persistent diestrus or anovulatory state was induced most quickly by the valine-deficient diet and most slowly by the lysine-deficient diet. A decline in the systemic insulin-like growth factor 1 level was associated with a dietary amino acid deficiency. Furthermore, a paired group of rats that were fed an isocaloric diet with balanced amino acids maintained normal estrous cyclicity. These disturbances of the estrous cycle by amino acid deficiency were quickly reversed by the consumption of a normal diet. The continuous anovulatory state in this study is not attributable to a decrease in caloric intake but to an imbalance in the dietary amino acid composition. With a shortage of well-balanced amino acid sources, reproduction becomes risky for both the mother and the fetus. It could be viewed as an adaptation to the diet, diverting resources away from reproduction and reallocating them to survival until well-balanced amino acid sources are found

    Study of multi-muon events produced in p\bar{p} interactions at \sqrt{s}=1.96 TeV

    Get PDF
    68 pages, 46 figures, 11 tables. Submitted to Phys. Rev. D. Removed typos from the authors' listWe report the results of a study of multi-muon events produced at the Fermilab Tevatron collider and acquired with the CDF II detector using a dedicated dimuon trigger. The production cross section and kinematics of events in which both muon candidates are produced inside the beam pipe of radius 1.5 cm are successfully modeled by known processes which include heavy flavor production. In contrast, we are presently unable to fully account for the number and properties of the remaining events, in which at least one muon candidate is produced outside of the beam pipe, in terms of the same understanding of the CDF II detector, trigger, and event reconstruction.Peer reviewe

    Spatial and social sexual segregation patterns in Indo-Pacific bottlenose dolphins (Tursiops aduncus)

    No full text
    Sexual segregation seems to be common in bottlenose dolphins, whereby males and females live in different pods that mix mainly for mating. Male dolphins often use aggressive behaviour to mate with females, while females with calves may have different activity and dietary requirements to males and different susceptibility to predation. We investigated the degree of spatial and social sexual segregation in Indo-Pacific bottlenose dolphins (Tursiops aduncus) in a subtropical estuary in Australia. Based on surveys completed over three years, dolphin groups were mostly mixed-sex or female. Mixed-sex groups were found in larger groups in mostly deeper water, whereas, female groups were foraging across all water depths in smaller groups. Aggressive coercive behaviour by males towards females was high, occurring mainly in deeper water, at higher tides, and outside the breeding season. Habitat use by female dolphin groups suggests that shallow tributaries may provide a sanctuary from aggressive males, access to suitable prey items and density for mothers and their calves, or a combination of these factors
    corecore