334 research outputs found

    Explaining unexplained pain to fibromyalgia patients: finding a narrative that is acceptable to patients and provides a rationale for evidence based interventions

    Get PDF
    As the cause of fibromyalgia is controversial, communicating with patients can be challenging, particularly if the patient adopts the narrative ‘I am damaged and so I need a more powerful pain killer’. Research shows that providing patients with alternative narratives can be helpful, but it remains unclear what particular narratives are most acceptable to patients and at the same time provide a rationale for evidence based psychological and exercise interventions. This article described the development of a new narrative and the written comments made about the narrative by fibromyalgia patients. The narrative derives from a complexity theory model and provides an alternative to biogenic and psychogenic models. The model was presented to 15 patients whose comments about comprehensibility led to the final format of the narrative. In the final form, the body is presented as ‘a very, very clever computer’ where fibromyalgia is caused by a software rather than a hardware problem. The software problem is caused by the body adapting when people have to ‘keep going’ despite ‘stop signals’, such as pain and fatigue. The narrative provides a rationale for engaging in psychological and exercise interventions as a way of correcting the body’s software. This way of explaining fibromyalgia was evaluated by a further 25 patients attending a 7-week ‘body reprogramming’ intervention, where the therapy was presented as correcting the body’s software, and included both exercise and psychological components. Attendance at the course was 85%. Thematic analysis of written patient feedback collected after each session showed that patients found the model believable and informative, it provided hope and was empowering. Patients also indicated that they had started to implement lifestyle change with perceived benefit. Fibromyalgia patients appear to respond positively to a technology-derived narrative based on the analogy of the body as a computer

    Recognizing recurrent neural networks (rRNN): Bayesian inference for recurrent neural networks

    Get PDF
    Recurrent neural networks (RNNs) are widely used in computational neuroscience and machine learning applications. In an RNN, each neuron computes its output as a nonlinear function of its integrated input. While the importance of RNNs, especially as models of brain processing, is undisputed, it is also widely acknowledged that the computations in standard RNN models may be an over-simplification of what real neuronal networks compute. Here, we suggest that the RNN approach may be made both neurobiologically more plausible and computationally more powerful by its fusion with Bayesian inference techniques for nonlinear dynamical systems. In this scheme, we use an RNN as a generative model of dynamic input caused by the environment, e.g. of speech or kinematics. Given this generative RNN model, we derive Bayesian update equations that can decode its output. Critically, these updates define a 'recognizing RNN' (rRNN), in which neurons compute and exchange prediction and prediction error messages. The rRNN has several desirable features that a conventional RNN does not have, for example, fast decoding of dynamic stimuli and robustness to initial conditions and noise. Furthermore, it implements a predictive coding scheme for dynamic inputs. We suggest that the Bayesian inversion of recurrent neural networks may be useful both as a model of brain function and as a machine learning tool. We illustrate the use of the rRNN by an application to the online decoding (i.e. recognition) of human kinematics

    Evolutionary connectionism: algorithmic principles underlying the evolution of biological organisation in evo-devo, evo-eco and evolutionary transitions

    Get PDF
    The mechanisms of variation, selection and inheritance, on which evolution by natural selection depends, are not fixed over evolutionary time. Current evolutionary biology is increasingly focussed on understanding how the evolution of developmental organisations modifies the distribution of phenotypic variation, the evolution of ecological relationships modifies the selective environment, and the evolution of reproductive relationships modifies the heritability of the evolutionary unit. The major transitions in evolution, in particular, involve radical changes in developmental, ecological and reproductive organisations that instantiate variation, selection and inheritance at a higher level of biological organisation. However, current evolutionary theory is poorly equipped to describe how these organisations change over evolutionary time and especially how that results in adaptive complexes at successive scales of organisation (the key problem is that evolution is self-referential, i.e. the products of evolution change the parameters of the evolutionary process). Here we first reinterpret the central open questions in these domains from a perspective that emphasises the common underlying themes. We then synthesise the findings from a developing body of work that is building a new theoretical approach to these questions by converting well-understood theory and results from models of cognitive learning. Specifically, connectionist models of memory and learning demonstrate how simple incremental mechanisms, adjusting the relationships between individually-simple components, can produce organisations that exhibit complex system-level behaviours and improve the adaptive capabilities of the system. We use the term “evolutionary connectionism” to recognise that, by functionally equivalent processes, natural selection acting on the relationships within and between evolutionary entities can result in organisations that produce complex system-level behaviours in evolutionary systems and modify the adaptive capabilities of natural selection over time. We review the evidence supporting the functional equivalences between the domains of learning and of evolution, and discuss the potential for this to resolve conceptual problems in our understanding of the evolution of developmental, ecological and reproductive organisations and, in particular, the major evolutionary transitions

    Sex-biased parental care and sexual size dimorphism in a provisioning arthropod

    Get PDF
    The diverse selection pressures driving the evolution of sexual size dimorphism (SSD) have long been debated. While the balance between fecundity selection and sexual selection has received much attention, explanations based on sex-specific ecology have proven harder to test. In ectotherms, females are typically larger than males, and this is frequently thought to be because size constrains female fecundity more than it constrains male mating success. However, SSD could additionally reflect maternal care strategies. Under this hypothesis, females are relatively larger where reproduction requires greater maximum maternal effort – for example where mothers transport heavy provisions to nests. To test this hypothesis we focussed on digger wasps (Hymenoptera: Ammophilini), a relatively homogeneous group in which only females provision offspring. In some species, a single large prey item, up to 10 times the mother’s weight, must be carried to each burrow on foot; other species provide many small prey, each flown individually to the nest. We found more pronounced female-biased SSD in species where females carry single, heavy prey. More generally, SSD was negatively correlated with numbers of prey provided per offspring. Females provisioning multiple small items had longer wings and thoraxes, probably because smaller prey are carried in flight. Despite much theorising, few empirical studies have tested how sex-biased parental care can affect SSD. Our study reveals that such costs can be associated with the evolution of dimorphism, and this should be investigated in other clades where parental care costs differ between sexes and species

    Silica burial enhanced by iron limitation in oceanic upwelling margins

    Get PDF
    In large swaths of the ocean, primary production by diatoms may be limited by the availability of silica, which in turn limits the biological uptake of carbon dioxide. The burial of biogenic silica in the form of opal is the main sink of marine silicon. Opal burial occurs in equal parts in iron-limited open-ocean provinces and upwelling margins, especially the eastern Pacific upwelling zone. However, it is unclear why opal burial is so efficient in this margin. Here we measure fluxes of biogenic material, concentrations of diatom-bound iron and silicon isotope ratios using sediment traps and a sediment core from the Gulf of California upwelling margin. In the sediment trap material, we find that periods of intense upwelling are associated with transient iron limitation that results in a high export of silica relative to organic carbon. A similar correlation between enhanced silica burial and iron limitation is evident in the sediment core, which spans the past 26,000 years. A global compilation also indicates that hotspots of silicon burial in the ocean are all characterized by high silica to organic carbon export ratios, a diagnostic trait for diatoms growing under iron stress. We therefore propose that prevailing conditions of silica limitation in the ocean are largely caused by iron deficiency imposing an indirect constraint on oceanic carbon uptake

    Diagnosis of depression among adolescents – a clinical validation study of key questions and questionnaire

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The objective of the study is to improve general practitioners' diagnoses of adolescent depression. Major depression is ranked fourth in the worldwide disability impact.</p> <p>Method/Design</p> <p>Validation of 1) three key questions, 2) SCL-dep6, 3) SCL-10, 4) 9 other SCL questions and 5) WHO-5 in a clinical study among adolescents. The Composite International Diagnostic Interview (CIDI) is to be used as the gold standard interview. The project is a GP multicenter study to be conducted in both Norway and Denmark. Inclusion criteria are age (14–16) and fluency in the Norwegian and Danish language. A number of GPs will be recruited from both countries and at least 162 adolescents will be enrolled in the study from the patient lists of the GPs in each country, giving a total of at least 323 adolescent participants.</p> <p>Discussion</p> <p>The proportion of adolescents suffering from depressive disorders also seems to be increasing worldwide. Early interventions are known to reduce this illness. The earlier depression can be identified in adolescents, the greater the advantage. Therefore, we hope to find a suitable questionnaire that could be recommended for GPs.</p

    Functional similarities between pigeon \u27milk\u27 and mammalian milk : induction of immune gene expression and modification of the microbiota

    Get PDF
    Pigeon &lsquo;milk&rsquo; and mammalian milk have functional similarities in terms of nutritional benefit and delivery of immunoglobulins to the young. Mammalian milk has been clearly shown to aid in the development of the immune system and microbiota of the young, but similar effects have not yet been attributed to pigeon &lsquo;milk&rsquo;. Therefore, using a chicken model, we investigated the effect of pigeon &lsquo;milk&rsquo; on immune gene expression in the Gut Associated Lymphoid Tissue (GALT) and on the composition of the caecal microbiota. Chickens fed pigeon &lsquo;milk&rsquo; had a faster rate of growth and a better feed conversion ratio than control chickens. There was significantly enhanced expression of immune-related gene pathways and interferon-stimulated genes in the GALT of pigeon &lsquo;milk&rsquo;-fed chickens. These pathways include the innate immune response, regulation of cytokine production and regulation of B cell activation and proliferation. The caecal microbiota of pigeon &lsquo;milk&rsquo;-fed chickens was significantly more diverse than control chickens, and appears to be affected by prebiotics in pigeon &lsquo;milk&rsquo;, as well as being directly seeded by bacteria present in pigeon &lsquo;milk&rsquo;. Our results demonstrate that pigeon &lsquo;milk&rsquo; has further modes of action which make it functionally similar to mammalian milk. We hypothesise that pigeon &lsquo;lactation&rsquo; and mammalian lactation evolved independently but resulted in similarly functional products

    Exercise in obese pregnant women: The role of social factors, lifestyle and pregnancy symptoms

    Get PDF
    Background Physical activity may reduce the risk of adverse maternal outcomes, yet there are very few studies that have examined the correlates of exercise amongst obese women during pregnancy. We examined which relevant sociodemographic, obstetric, and health behaviour variables and pregnancy symptoms were associated with exercise in a small sample of obese pregnant women. Methods This was a secondary analysis using data from an exercise intervention for the prevention of gestational diabetes in obese pregnant women. Using the Pregnancy Physical Activity Questionnaire (PPAQ), 50 obese pregnant women were classified as "Exercisers" if they achieved ≥900 kcal/wk of exercise and "Non-Exercisers" if they did not meet this criterion. Analyses examined which relevant variables were associated with exercise status at 12, 20, 28 and 36 weeks gestation. Results Obese pregnant women with a history of miscarriage; who had children living at home; who had a lower pre-pregnancy weight; reported no nausea and vomiting; and who had no lower back pain, were those women who were most likely to have exercised in early pregnancy. Exercise in late pregnancy was most common among tertiary educated women. Conclusions Offering greater support to women from disadvantaged backgrounds and closely monitoring women who report persistent nausea and vomiting or lower back pain in early pregnancy may be important. The findings may be particularly useful for other interventions aimed at reducing or controlling weight gain in obese pregnant women
    corecore