62 research outputs found

    Quantitative analysis of protein S-acylation site dynamics using site-specific acyl-biotin exchange (ssABE).

    Get PDF
    Protein S-acylation (palmitoylation) is a reversible lipid modification that is increasingly recognized as an important regulator of protein function, including membrane association, trafficking, and subcellular localization. Most proteomic methods to study palmitoylation allow characterization of putative palmitoylated proteins but do not permit identification of individual sites of palmitoylation. We have recently adapted the Acyl-Biotin Exchange (ABE) method that is routinely used for palmitoyl-proteome characterization, to permit global S-acylation site analysis. This site-specific ABE (ssABE) protocol, when combined with SILAC-based quantification, allows both the large-scale identification of palmitoylation sites and quantitative profiling of palmitoylation site changes. This approach enables palmitoylation to be studied at a systems level comparable to other more intensively studied post-translational modifications

    Palmitoylation and membrane cholesterol stabilize μ-opioid receptor homodimerization and G protein coupling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A cholesterol-palmitoyl interaction has been reported to occur in the dimeric interface of the β<sub>2</sub>-adrenergic receptor crystal structure. We sought to investigate whether a similar phenomenon could be observed with μ-opioid receptor (OPRM1), and if so, to assess the role of cholesterol in this class of G protein-coupled receptor (GPCR) signaling.</p> <p>Results</p> <p>C3.55(170) was determined to be the palmitoylation site of OPRM1. Mutation of this Cys to Ala did not affect the binding of agonists, but attenuated receptor signaling and decreased cholesterol associated with the receptor signaling complex. In addition, both attenuation of receptor palmitoylation (by mutation of C3.55[170] to Ala) and inhibition of cholesterol synthesis (by treating the cells with simvastatin, a HMG-CoA reductase inhibitor) impaired receptor signaling, possibly by decreasing receptor homodimerization and Gαi2 coupling; this was demonstrated by co-immunoprecipitation, immunofluorescence colocalization and fluorescence resonance energy transfer (FRET) analyses. A computational model of the OPRM1 homodimer structure indicated that a specific cholesterol-palmitoyl interaction can facilitate OPRM1 homodimerization at the TMH4-TMH4 interface.</p> <p>Conclusions</p> <p>We demonstrate that C3.55(170) is the palmitoylation site of OPRM1 and identify a cholesterol-palmitoyl interaction in the OPRM1 complex. Our findings suggest that this interaction contributes to OPRM1 signaling by facilitating receptor homodimerization and G protein coupling. This conclusion is supported by computational modeling of the OPRM1 homodimer.</p

    The Ankyrin Repeats and DHHC S-acyl Transferase Domain of AKR1 Act Independently to Regulate Switching from Vegetative to Mating States in Yeast

    Get PDF
    Signal transduction from G-protein coupled receptors to MAPK cascades through heterotrimeric G-proteins has been described for many eukaryotic systems. One of the best-characterised examples is the yeast pheromone response pathway, which is negatively regulated by AKR1. AKR1-like proteins are present in all eukaryotes and contain a DHHC domain and six ankyrin repeats. Whilst the DHHC domain dependant S-acyl transferase (palmitoyl transferase) function of AKR1 is well documented it is not known whether the ankyrin repeats are also required for this activity. Here we show that the ankyrin repeats of AKR1 are required for full suppression of the yeast pheromone response pathway, by sequestration of the Gβγ dimer, and act independently of AKR1 S-acylation function. Importantly, the functions provided by the AKR1 ankyrin repeats and DHHC domain are not required on the same molecule to fully restore WT phenotypes and function. We also show that AKR1 molecules are S-acylated at locations other than the DHHC cysteine, increasing the abundance of AKR1 in the cell. Our results have important consequences for studies of AKR1 function, including recent attempts to characterise S-acylation enzymology and kinetics. Proteins similar to AKR1 are found in all eukaryotes and our results have broad implications for future work on these proteins and the control of switching between Gβγ regulated pathways

    Low Levels of Human HIP14 Are Sufficient to Rescue Neuropathological, Behavioural, and Enzymatic Defects Due to Loss of Murine HIP14 in Hip14−/− Mice

    Get PDF
    Huntingtin Interacting Protein 14 (HIP14) is a palmitoyl acyl transferase (PAT) that was first identified due to altered interaction with mutant huntingtin, the protein responsible for Huntington Disease (HD). HIP14 palmitoylates a specific set of neuronal substrates critical at the synapse, and downregulation of HIP14 by siRNA in vitro results in increased cell death in neurons. We previously reported that mice lacking murine Hip14 (Hip14−/−) share features of HD. In the current study, we have generated human HIP14 BAC transgenic mice and crossed them to the Hip14−/− model in order to confirm that the defects seen in Hip14−/− mice are in fact due to loss of Hip14. In addition, we sought to determine whether human HIP14 can provide functional compensation for loss of murine Hip14. We demonstrate that despite a relative low level of expression, as assessed via Western blot, BAC-derived human HIP14 compensates for deficits in neuropathology, behavior, and PAT enzyme function seen in the Hip14−/− model. Our findings yield important insights into HIP14 function in vivo

    Proteomic Analysis of S-Acylated Proteins in Human B Cells Reveals Palmitoylation of the Immune Regulators CD20 and CD23

    Get PDF
    S-palmitoylation is a reversible post-translational modification important for controlling the membrane targeting and function of numerous membrane proteins with diverse roles in signalling, scaffolding, and trafficking. We sought to identify novel palmitoylated proteins in B lymphocytes using acyl-biotin exchange chemistry, coupled with differential analysis by liquid-chromatography tandem mass spectrometry. In total, we identified 57 novel palmitoylated protein candidates from human EBV-transformed lymphoid cells. Two of them, namely CD20 and CD23 (low affinity immunoglobulin epsilon Fc receptor), are immune regulators that are effective/potential therapeutic targets for haematological malignancies, autoimmune diseases and allergic disorders. Palmitoylation of CD20 and CD23 was confirmed by heterologous expression of alanine mutants coupled with bioorthogonal metabolic labeling. This study demonstrates a new subset of palmitoylated proteins in B cells, illustrating the ubiquitous role of protein palmitoylation in immune regulation

    Nicotinic Receptors Underlying Nicotine Dependence: Evidence from Transgenic Mouse Models.

    Get PDF
    Nicotine underlies the reinforcing properties of tobacco cigarettes and e-cigarettes. After inhalation and absorption, nicotine binds to various nicotinic acetylcholine receptor (nAChR) subtypes localized on the pre- and postsynaptic membranes of cells, which subsequently leads to the modulation of cellular function and neurotransmitter signaling. In this chapter, we begin by briefly reviewing the current understanding of nicotine's actions on nAChRs and highlight considerations regarding nAChR subtype localization and pharmacodynamics. Thereafter, we discuss the seminal discoveries derived from genetically modified mouse models, which have greatly contributed to our understanding of nicotine's effects on the reward-related mesolimbic pathway and the aversion-related habenulo-interpeduncular pathway. Thereafter, emerging areas of research focusing on modulation of nAChR expression and/or function are considered. Taken together, these discoveries have provided a foundational understanding of various genetic, neurobiological, and behavioral factors underlying the motivation to use nicotine and related dependence processes, which are thereby advancing drug discovery efforts to promote long-term abstinence

    Analysis of Familial Hemophagocytic Lymphohistiocytosis type 4 (FHL-4) mutant proteins reveals that S-acylation is required for the function of syntaxin 11 in natural killer cells

    Get PDF
    Natural killer (NK) cell secretory lysosome exocytosis and cytotoxicity are impaired in familial hemophagocytic lymphohistiocytosis type 4 (FHL-4), a disorder caused by mutations in the gene encoding the SNARE protein syntaxin 11. We show that syntaxin 11 binds to SNAP23 in NK cells and that this interaction is reduced by FHL-4 truncation and frameshift mutation proteins that delete all or part of the SNARE domain of syntaxin 11. In contrast the FHL-4 mutant proteins bound to the Sec-1/Munc18-like (SM) protein Munc18-2. We demonstrate that the C-terminal cysteine rich region of syntaxin 11, which is deleted in the FHL-4 mutants, is S-acylated. This posttranslational modification is required for the membrane association of syntaxin 11 and for its polarization to the immunological synapse in NK cells conjugated to target cells. Moreover, we show that Munc18-2 is recruited by syntaxin 11 to intracellular membranes in resting NK cells and to the immunological synapse in activated NK cells. This recruitment of Munc18-2 is abolished by deletion of the C-terminal cysteine rich region of syntaxin 11. These results suggest a pivotal role for S-acylation in the function of syntaxin 11 in NK cells
    corecore