629 research outputs found

    Developing an agenda for research about policies to improve access to healthy foods in rural communities: a concept mapping study

    Get PDF
    Background Policies that improve access to healthy, affordable foods may improve population health and reduce health disparities. In the United States most food access policy research focuses on urban communities even though residents of rural communities face disproportionately higher risk for nutrition-related chronic diseases compared to residents of urban communities. The purpose of this study was to (1) identify the factors associated with access to healthy, affordable food in rural communities in the United States; and (2) prioritize a meaningful and feasible rural food policy research agenda. Methods This study was conducted by the Rural Food Access Workgroup (RFAWG), a workgroup facilitated by the Nutrition and Obesity Policy Research and Evaluation Network. A national sample of academic and non-academic researchers, public health and cooperative extension practitioners, and other experts who focus on rural food access and economic development was invited to complete a concept mapping process that included brainstorming the factors that are associated with rural food access, sorting and organizing the factors into similar domains, and rating the importance of policies and research to address these factors. As a last step, RFAWG members convened to interpret the data and establish research recommendations. Results Seventy-five participants in the brainstorming exercise represented the following sectors: non-extension research (n = 27), non-extension program administration (n = 18), “other� (n = 14), policy advocacy (n = 10), and cooperative extension service (n = 6). The brainstorming exercise generated 90 distinct statements about factors associated with rural food access in the United States; these were sorted into 5 clusters. Go Zones were established for the factors that were rated highly as both a priority policy target and a priority for research. The highest ranked policy and research priorities include strategies designed to build economic viability in rural communities, improve access to federal food and nutrition assistance programs, improve food retail systems, and increase the personal food production capacity of rural residents. Respondents also prioritized the development of valid and reliable research methodologies to measure variables associated with rural food access. Conclusions This collaborative, trans-disciplinary, participatory process, created a map to guide and prioritize research about polices to improve healthy, affordable food access in rural communities

    Incidence and Risk Factors of Serious Adverse Events during Antituberculous Treatment in Rwanda: A Prospective Cohort Study

    Get PDF
    BACKGROUND: Tuberculosis (TB) and TB-human immunodeficiency virus infection (HIV) coinfection is a major public health concern in resource-limited settings. Although TB treatment is challenging in HIV-infected patients because of treatment interactions, immunopathological reactions, and concurrent infections, few prospective studies have addressed this in sub-Saharan Africa. In this study we aimed to determine incidence, causes of, and risk factors for serious adverse events among patients on first-line antituberculous treatment, as well as its impact on antituberculous treatment outcome. METHODS AND FINDINGS: Prospective observational cohort study of adults treated for TB at the Internal Medicine department of the Kigali University Hospital from May 2008 through August 2009. Of 263 patients enrolled, 253 were retained for analysis: median age 35 (Interquartile range, IQR 28-40), 55% male, 66% HIV-positive with a median CD4 count 104 cells/mm(3) (IQR 44-248 cells/mm(3)). Forty percent had pulmonary TB, 43% extrapulmonary TB and 17% a mixed form. Sixty-four (26%) developed a serious adverse event; 58/167 (35%) HIV-infected vs. 6/86 (7%) HIV-uninfected individuals. Commonest events were concurrent infection (n = 32), drug-induced hepatitis (n = 24) and paradoxical reactions/TB-IRIS (n = 23). HIV-infection (adjusted Hazard Ratio, aHR 3.4, 95% Confidence Interval, CI 1.4-8.7) and extrapulmonary TB (aHR 2, 95%CI 1.1-3.7) were associated with an increased risk of serious adverse events. For TB/HIV co-infected patients, extrapulmonary TB (aHR 2.0, 95%CI 1.1-3.9) and CD4 count <100 cells/mm3 at TB diagnosis (aHR 1.7, 95%CI 1.0-2.9) were independent predictors. Adverse events were associated with an almost two-fold higher risk of unsuccessful treatment outcome at 6 months (HR 1.89, 95%CI 1.3-3.0). CONCLUSION: Adverse events frequently complicate the course of antituberculous treatment and worsen treatment outcome, particularly in patients with extrapulmonary TB and advanced immunodeficiency. Concurrent infection accounts for most events. Our data suggest that deterioration in a patient already receiving antituberculous treatment should prompt an aggressive search for additional infections

    Crystal Structure of a Charge Engineered Human Lysozyme Having Enhanced Bactericidal Activity

    Get PDF
    Human lysozyme is a key component of the innate immune system, and recombinant forms of the enzyme represent promising leads in the search for therapeutic agents able to treat drug-resistant infections. The wild type protein, however, fails to participate effectively in clearance of certain infections due to inherent functional limitations. For example, wild type lysozymes are subject to electrostatic sequestration and inactivation by anionic biopolymers in the infected airway. A charge engineered variant of human lysozyme has recently been shown to possess improved antibacterial activity in the presence of disease associated inhibitory molecules. Here, the 2.04 Å crystal structure of this variant is presented along with an analysis that provides molecular level insights into the origins of the protein's enhanced performance. The charge engineered variant's two mutated amino acids exhibit stabilizing interactions with adjacent native residues, and from a global perspective, the mutations cause no gross structural perturbations or loss of stability. Importantly, the two substitutions dramatically expand the negative electrostatic potential that, in the wild type enzyme, is restricted to a small region near the catalytic residues. The net result is a reduction in the overall strength of the engineered enzyme's electrostatic potential field, and it appears that the specific nature of this remodeled field underlies the variant's reduced susceptibility to inhibition by anionic biopolymers

    CloVR: A virtual machine for automated and portable sequence analysis from the desktop using cloud computing

    Get PDF
    Next-generation sequencing technologies have decentralized sequence acquisition, increasing the demand for new bioinformatics tools that are easy to use, portable across multiple platforms, and scalable for high-throughput applications. Cloud computing platforms provide on-demand access to computing infrastructure over the Internet and can be used in combination with custom built virtual machines to distribute pre-packaged with pre-configured software. We describe the Cloud Virtual Resource, CloVR, a new desktop application for push-button automated sequence analysis that can utilize cloud computing resources. CloVR is implemented as a single portable virtual machine (VM) that provides several automated analysis pipelines for microbial genomics, including 16S, whole genome and metagenome sequence analysis. The CloVR VM runs on a personal computer, utilizes local computer resources and requires minimal installation, addressing key challenges in deploying bioinformatics workflows. In addition CloVR supports use of remote cloud computing resources to improve performance for large-scale sequence processing. In a case study, we demonstrate the use of CloVR to automatically process next-generation sequencing data on multiple cloud computing platforms. The CloVR VM and associated architecture lowers the barrier of entry for utilizing complex analysis protocols on both local single- and multi-core computers and cloud systems for high throughput data processing.https://doi.org/10.1186/1471-2105-12-35

    Nephele: genotyping via complete composition vectors and MapReduce

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Current sequencing technology makes it practical to sequence many samples of a given organism, raising new challenges for the processing and interpretation of large genomics data sets with associated metadata. Traditional computational phylogenetic methods are ideal for studying the evolution of gene/protein families and using those to infer the evolution of an organism, but are less than ideal for the study of the whole organism mainly due to the presence of insertions/deletions/rearrangements. These methods provide the researcher with the ability to group a set of samples into distinct genotypic groups based on sequence similarity, which can then be associated with metadata, such as host information, pathogenicity, and time or location of occurrence. Genotyping is critical to understanding, at a genomic level, the origin and spread of infectious diseases. Increasingly, genotyping is coming into use for disease surveillance activities, as well as for microbial forensics. The classic genotyping approach has been based on phylogenetic analysis, starting with a multiple sequence alignment. Genotypes are then established by expert examination of phylogenetic trees. However, these traditional single-processor methods are suboptimal for rapidly growing sequence datasets being generated by next-generation DNA sequencing machines, because they increase in computational complexity quickly with the number of sequences.</p> <p>Results</p> <p>Nephele is a suite of tools that uses the complete composition vector algorithm to represent each sequence in the dataset as a vector derived from its constituent k-mers by passing the need for multiple sequence alignment, and affinity propagation clustering to group the sequences into genotypes based on a distance measure over the vectors. Our methods produce results that correlate well with expert-defined clades or genotypes, at a fraction of the computational cost of traditional phylogenetic methods run on traditional hardware. Nephele can use the open-source Hadoop implementation of MapReduce to parallelize execution using multiple compute nodes. We were able to generate a neighbour-joined tree of over 10,000 16S samples in less than 2 hours.</p> <p>Conclusions</p> <p>We conclude that using Nephele can substantially decrease the processing time required for generating genotype trees of tens to hundreds of organisms at genome scale sequence coverage.</p

    Threshold effect of foreign direct investment on environmental degradation

    Get PDF
    The aim of this paper is to investigate the threshold effect of foreign direct investment (FDI) on environmental degradation. In empirical analysis, FDI and environmental degradation are jointly determined under the given threshold variable and other exogenous variables. Using carbon dioxide (CO2) emissions per capita as a proxy for environmental degradation, the results show that increasing FDI worsens CO2 emissions after a threshold level of corruption has been reached. Our results demonstrate that increasing FDI will increase CO2 emissions when the degree of corruptibility is relatively high. The study suggests that further FDI and improved environmental quality are competing rather than compatible objectives in high-corruption countries and are compatible rather than competing objectives in low-corruption countries. Higher trade liberalization in low-corruption countries could contribute to negative environmental consequences because of the increased output or economic activity which results from increased trade. The robustness estimation confirms the evidence that pollution and economic development increase together up to a certain income level, after which the trend reverses.info:eu-repo/semantics/publishedVersio

    Dichloroacetate reverses the hypoxic adaptation to bevacizumab and enhances its antitumor effects in mouse xenografts.

    Get PDF
    Inhibition of vascular endothelial growth factor increases response rates to chemotherapy and progression-free survival in glioblastoma. However, resistance invariably occurs, prompting the urgent need for identification of synergizing agents. One possible strategy is to understand tumor adaptation to microenvironmental changes induced by antiangiogenic drugs and test agents that exploit this process. We used an in vivo glioblastoma-derived xenograft model of tumor escape in presence of continuous treatment with bevacizumab. U87-MG or U118-MG cells were subcutaneously implanted into either BALB/c SCID or athymic nude mice. Bevacizumab was given by intraperitoneal injection every 3 days (2.5 mg/kg/dose) and/or dichloroacetate (DCA) was administered by oral gavage twice daily (50 mg/kg/dose) when tumor volumes reached 0.3 cm(3) and continued until tumors reached approximately 1.5-2.0 cm(3). Microarray analysis of resistant U87 tumors revealed coordinated changes at the level of metabolic genes, in particular, a widening gap between glycolysis and mitochondrial respiration. There was a highly significant difference between U87-MG-implanted athymic nude mice 1 week after drug treatment. By 2 weeks of treatment, bevacizumab and DCA together dramatically blocked tumor growth compared to either drug alone. Similar results were seen in athymic nude mice implanted with U118-MG cells. We demonstrate for the first time that reversal of the bevacizumab-induced shift in metabolism using DCA is detrimental to neoplastic growth in vivo. As DCA is viewed as a promising agent targeting tumor metabolism, our data establish the timely proof of concept that combining it with antiangiogenic therapy represents a potent antineoplastic strategy

    Widespread Over-Expression of the X Chromosome in Sterile F1 Hybrid Mice

    Get PDF
    The X chromosome often plays a central role in hybrid male sterility between species, but it is unclear if this reflects underlying regulatory incompatibilities. Here we combine phenotypic data with genome-wide expression data to directly associate aberrant expression patterns with hybrid male sterility between two species of mice. We used a reciprocal cross in which F1 males are sterile in one direction and fertile in the other direction, allowing us to associate expression differences with sterility rather than with other hybrid phenotypes. We found evidence of extensive over-expression of the X chromosome during spermatogenesis in sterile but not in fertile F1 hybrid males. Over-expression was most pronounced in genes that are normally expressed after meiosis, consistent with an X chromosome-wide disruption of expression during the later stages of spermatogenesis. This pattern was not a simple consequence of faster evolutionary divergence on the X chromosome, because X-linked expression was highly conserved between the two species. Thus, transcriptional regulation of the X chromosome during spermatogenesis appears particularly sensitive to evolutionary divergence between species. Overall, these data provide evidence for an underlying regulatory basis to reproductive isolation in house mice and underscore the importance of transcriptional regulation of the X chromosome to the evolution of hybrid male sterility

    Physics of Neutron Star Crusts

    Get PDF
    The physics of neutron star crusts is vast, involving many different research fields, from nuclear and condensed matter physics to general relativity. This review summarizes the progress, which has been achieved over the last few years, in modeling neutron star crusts, both at the microscopic and macroscopic levels. The confrontation of these theoretical models with observations is also briefly discussed.Comment: 182 pages, published version available at <http://www.livingreviews.org/lrr-2008-10

    Lifespan extension without fertility reduction following dietary addition of the autophagy activator Torin1 in Drosophila melanogaster

    Get PDF
    Autophagy is a highly conserved mechanism for cellular repair that becomes progressively down-regulated during normal ageing. Hence, manipulations that activate autophagy could increase lifespan. Previous reports show that manipulations to the autophagy pathway can result in longevity extension in yeast, flies, worms and mammals. Under standard nutrition, autophagy is inhibited by the nutrient sensing kinase Target of Rapamycin (TOR). Therefore, manipulations of TOR that increase autophagy may offer a mechanism for extending lifespan. Ideally, such manipulations should be specific and minimise off-target effects, and it is important to discover additional methods for ‘clean’ lifespan manipulation. Here we report an initial study into the effect of up-regulating autophagy on lifespan and fertility in Drosophila melanogaster by dietary addition of Torin1. Activation of autophagy using this selective TOR inhibitor was associated with significantly increased lifespan in both sexes. Torin1 induced a dose-dependent increase in lifespan in once-mated females. There was no evidence of a trade-off between longevity and fecundity or fertility. Torin1-fed females exhibited significantly elevated fecundity, but also elevated egg infertility, resulting in no net change in overall fertility. This supports the idea that lifespan can be extended without trade-offs in fertility and suggest that Torin1 may be a useful tool with which to pursue anti-ageing research
    corecore