215 research outputs found

    Intra- and inter-individual genetic differences in gene expression

    Get PDF
    Genetic variation is known to influence the amount of mRNA produced by a gene. Given that the molecular machines control mRNA levels of multiple genes, we expect genetic variation in the components of these machines would influence multiple genes in a similar fashion. In this study we show that this assumption is correct by using correlation of mRNA levels measured independently in the brain, kidney or liver of multiple, genetically typed, mice strains to detect shared genetic influences. These correlating groups of genes (CGG) have collective properties that account for 40-90% of the variability of their constituent genes and in some cases, but not all, contain genes encoding functionally related proteins. Critically, we show that the genetic influences are essentially tissue specific and consequently the same genetic variations in the one animal may up-regulate a CGG in one tissue but down-regulate the same CGG in a second tissue. We further show similarly paradoxical behaviour of CGGs within the same tissues of different individuals. The implication of this study is that this class of genetic variation can result in complex inter- and intra-individual and tissue differences and that this will create substantial challenges to the investigation of phenotypic outcomes, particularly in humans where multiple tissues are not readily available.

&#xa

    Extremely Long-Lived Stigmas Allow Extended Cross-Pollination Opportunities in a High Andean Plant

    Get PDF
    High-elevation ecosystems are traditionally viewed as environments in which predominantly autogamous breeding systems should be selected because of the limited pollinator availability. Chaetanthera renifolia (Asteraceae) is an endemic monocarpic triennial herb restricted to a narrow altitudinal range within the high Andes of central Chile (3300–3500 m a.s.l.), just below the vegetation limit. This species displays one of the larger capitulum within the genus. Under the reproductive assurance hypothesis, and considering its short longevity (monocarpic triennial), an autogamous breeding system and low levels of pollen limitation would be predicted for C. renifolia. In contrast, considering its large floral size, a xenogamous breeding system, and significant levels of pollen limitation could be expected. In addition, the increased pollination probability hypothesis predicts prolonged stigma longevity for high alpine plants. We tested these alternative predictions by performing experimental crossings in the field to establish the breeding system and to measure the magnitude of pollen limitation in two populations of C. renifolia. In addition, we measured the stigma longevity in unpollinated and open pollinated capitula, and pollinator visitation rates in the field. We found low levels of self-compatibility and significant levels of pollen limitation in C. renifolia. Pollinator visitation rates were moderate (0.047–0.079 visits per capitulum per 30 min). Although pollinator visitation rate significantly differed between populations, they were not translated into differences in achene output. Finally, C. renifolia stigma longevity of unpollinated plants was extremely long and significantly higher than that of open pollinated plants (26.3±2.8 days vs. 10.1±2.2, respectively), which gives support to the increased pollination probability hypothesis for high-elevation flowering plants. Our results add to a growing number of studies that show that xenogamous breeding systems and mechanisms to increase pollination opportunities can be selected in high-elevation ecosystems

    A review of elliptical and disc galaxy structure, and modern scaling laws

    Full text link
    A century ago, in 1911 and 1913, Plummer and then Reynolds introduced their models to describe the radial distribution of stars in `nebulae'. This article reviews the progress since then, providing both an historical perspective and a contemporary review of the stellar structure of bulges, discs and elliptical galaxies. The quantification of galaxy nuclei, such as central mass deficits and excess nuclear light, plus the structure of dark matter halos and cD galaxy envelopes, are discussed. Issues pertaining to spiral galaxies including dust, bulge-to-disc ratios, bulgeless galaxies, bars and the identification of pseudobulges are also reviewed. An array of modern scaling relations involving sizes, luminosities, surface brightnesses and stellar concentrations are presented, many of which are shown to be curved. These 'redshift zero' relations not only quantify the behavior and nature of galaxies in the Universe today, but are the modern benchmark for evolutionary studies of galaxies, whether based on observations, N-body-simulations or semi-analytical modelling. For example, it is shown that some of the recently discovered compact elliptical galaxies at 1.5 < z < 2.5 may be the bulges of modern disc galaxies.Comment: Condensed version (due to Contract) of an invited review article to appear in "Planets, Stars and Stellar Systems"(www.springer.com/astronomy/book/978-90-481-8818-5). 500+ references incl. many somewhat forgotten, pioneer papers. Original submission to Springer: 07-June-201

    Design of the PROCON trial: a prospective, randomized multi – center study comparing cervical anterior discectomy without fusion, with fusion or with arthroplasty

    Get PDF
    BACKGROUND: PROCON was designed to assess the clinical outcome, development of adjacent disc disease and costs of cervical anterior discectomy without fusion, with fusion using a stand alone cage and implantation of a Bryan's disc prosthesis. Description of rationale and design of PROCON trial and discussion of its strengths and limitations. METHODS/DESIGN: Since proof justifying the use of implants or arthroplasty after cervical anterior discectomy is lacking, PROCON was designed. PROCON is a multicenter, randomized controlled trial comparing cervical anterior discectomy without fusion, with fusion with a stand alone cage or with implantation of a disc. The study population will be enrolled from patients with a single level cervical disc disease without myelopathic signs. Each treatment arm will need 90 patients. The patients will be followed for a minimum of five years, with visits scheduled at 6 weeks, 3 months, 12 months, and then yearly. At one year postoperatively, clinical outcome and self reported outcomes will be evaluated. At five years, the development of adjacent disc disease will be investigated. DISCUSSION: The results of this study will contribute to the discussion whether additional fusion or arthroplasty is needed and cost effective. TRIAL REGISTRATION: Current Controlled Trials ISRCTN4168184

    A reactivity-selectivity study of the Friedel-Crafts acetylation of 3,3′-dimethylbiphenyl and the oxidation of the acetyl derivatives

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Friedel-Crafts acetylation is an important route to aromatic ketones, in research laboratories and in industry. The acetyl derivatives of 3,3′-dimethylbiphenyl (3,3′-dmbp) have applications in the field of liquid crystals and polymers and may be oxidized to the dicarboxylic acids and derivatives that are of interest in cancer treatment.</p> <p>Findings</p> <p>The effect of solvent and temperature on the selectivity of monoacetylation of 3,3’-dmbp by the Perrier addition procedure was studied using stoichiometric amounts of reagents. 4-Ac-3,3′-dmbp was formed almost quantitatively in boiling 1,2-dichloroethane and this is almost twice the yield hitherto reported. Using instead a molar ratio of substrate:AcCl:AlCl<sub>3</sub> equal to 1:4:4 or 1:6:6 in boiling 1,2-dichloroethane, acetylation afforded 4,4′- and 4,6′-diacetyl-3,3′-dmbp in a total yield close to 100%. The acetyl derivatives were subsequently converted to the carboxylic acids by hypochlorite oxidation. The relative stabilities of the isomeric products and the corresponding σ-complexes were studied by DFT calculations and the data indicated that mono- and diacetylation followed different mechanisms.</p> <p>Conclusions</p> <p>Friedel-Crafts acetylation of 3,3′-dmbp using the Perrier addition procedure in boiling 1,2-dichloroethane was found to be superior to other recipes. The discrimination against the 6-acetyl derivative during monoacetylation seems to reflect a mechanism including an AcCl:AlCl<sub>3</sub> complex or larger agglomerates as the electrophile, whereas the less selective diacetylations of the deactivated 4-Ac-3,3′-dmbp are suggested to include the acetyl cation as the electrophile. The DFT data also showed that complexation of intermediates and products with AlCl<sub>3</sub> does not seem to be important in determining the mechanism.</p

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Dissociating Markers of Senescence and Protective Ability in Memory T Cells

    Get PDF
    No unique transcription factor or biomarker has been identified to reliably distinguish effector from memory T cells. Instead a set of surface markers including IL-7Rα and KLRG1 is commonly used to predict the potential of CD8 effector T cells to differentiate into memory cells. Similarly, these surface markers together with the tumor necrosis factor family member CD27 are frequently used to predict a memory T cell's ability to mount a recall response. Expression of these markers changes every time a memory cell is stimulated and repeated stimulation can lead to T cell senescence and loss of memory T cell responsiveness. This is a concern for prime–boost vaccine strategies which repeatedly stimulate T cells with the aim of increasing memory T cell frequency. The molecular cues that cause senescence are still unknown, but cell division history is likely to play a major role. We sought to dissect the roles of inflammation and cell division history in developing T cell senescence and their impact on the expression pattern of commonly used markers of senescence. We developed a system that allows priming of CD8 T cells with minimal inflammation and without acquisition of maximal effector function, such as granzyme expression, but a cell division history similar to priming with systemic inflammation. Memory cells derived from minimal effector T cells are fully functional upon rechallenge, have full access to non-lymphoid tissue and appear to be less senescent by phenotype upon rechallenge. However, we report here that these currently used biomarkers to measure senescence do not predict proliferative potential or protective ability, but merely reflect initial priming conditions

    A Novel System of Cytoskeletal Elements in the Human Pathogen Helicobacter pylori

    Get PDF
    Pathogenicity of the human pathogen Helicobacter pylori relies upon its capacity to adapt to a hostile environment and to escape from the host response. Therefore, cell shape, motility, and pH homeostasis of these bacteria are specifically adapted to the gastric mucus. We have found that the helical shape of H. pylori depends on coiled coil rich proteins (Ccrp), which form extended filamentous structures in vitro and in vivo, and are differentially required for the maintenance of cell morphology. We have developed an in vivo localization system for this pathogen. Consistent with a cytoskeleton-like structure, Ccrp proteins localized in a regular punctuate and static pattern within H. pylori cells. Ccrp genes show a high degree of sequence variation, which could be the reason for the morphological diversity between H. pylori strains. In contrast to other bacteria, the actin-like MreB protein is dispensable for viability in H. pylori, and does not affect cell shape, but cell length and chromosome segregation. In addition, mreB mutant cells displayed significantly reduced urease activity, and thus compromise a major pathogenicity factor of H. pylori. Our findings reveal that Ccrp proteins, but not MreB, affect cell morphology, while both cytoskeletal components affect the development of pathogenicity factors and/or cell cycle progression

    Dramatic Transcriptional Changes in an Intracellular Parasite Enable Host Switching between Plant and Insect

    Get PDF
    Phytoplasmas are bacterial plant pathogens that have devastating effects on the yields of crops and plants worldwide. They are intracellular parasites of both plants and insects, and are spread among plants by insects. How phytoplasmas can adapt to two diverse environments is of considerable interest; however, the mechanisms enabling the “host switching” between plant and insect hosts are poorly understood. Here, we report that phytoplasmas dramatically alter their gene expression in response to “host switching” between plant and insect. We performed a detailed characterization of the dramatic change that occurs in the gene expression profile of Candidatus Phytoplasma asteris OY-M strain (approximately 33% of the genes change) upon host switching between plant and insect. The phytoplasma may use transporters, secreted proteins, and metabolic enzymes in a host-specific manner. As phytoplasmas reside within the host cell, the proteins secreted from phytoplasmas are thought to play crucial roles in the interplay between phytoplasmas and host cells. Our microarray analysis revealed that the expression of the gene encoding the secreted protein PAM486 was highly upregulated in the plant host, which is also observed by immunohistochemical analysis, suggesting that this protein functions mainly when the phytoplasma grows in the plant host. Additionally, phytoplasma growth in planta was partially suppressed by an inhibitor of the MscL osmotic channel that is highly expressed in the plant host, suggesting that the osmotic channel might play an important role in survival in the plant host. These results also suggest that the elucidation of “host switching” mechanism may contribute to the development of novel pest controls
    corecore