127 research outputs found

    Anti-infliximab antibodies are already detectable in most patients with rheumatoid arthritis halfway through an infusioncycle: an open-label pharmacokinetic cohort study

    Get PDF
    Contains fulltext : 97636.pdf (publisher's version ) (Open Access)BACKGROUND: This study in patients with rheumatoid arthritis (RA) treated with infliximab describes prospectively the course of (anti)infliximab levels within an infusioncycle to assess at what moment patients develop low/no infliximab trough levels and/or detectable anti-infliximab levels. METHODS: Infliximab treated RA patients were included in this descriptive open-label cohort study. During one infusioncycle (anti-)infliximab levels were assessed just before and one hour after infusion, and subsequently at 50%, 75% and at the end of the infusioncycle (pre-infusion). RESULTS: 27 patients were included. The median infliximab levels decreased from 77.0 mg/l (p25-p75: 65-89) one hour after the infusion to pre-infusion levels of 0.0 mg/l (p25-p75: 0.0-3.1). In 7 (26%) patients pre-infusion anti-infliximab antibodies were detected; these antibodies were already present halfway through the infusioncycle in 5 of the 7 individuals. Patients with detectable pre-infusion anti-infliximab antibodies have significantly more often low/no infliximab levels (< 1 mg/l) halfway trough the infusioncycle (in 5/7 patients) compared to patients without detectable pre-infusion anti-infliximab antibodies (0/20 patients, p < 0.001). CONCLUSIONS: Most anti-infliximab forming patients have detectable anti-infliximab antibodies halfway through an infusioncycle, which implies that these patients are exposed to nontherapeutical infliximab levels during more than halve of their infusion cycle. As none of the patients without anti-infliximab antibodies had no/low-infliximab levels halfway through the infusioncycle, the presence of pre-infusion anti-infliximab antibodies seems a sensitive and specific predictor for no/low infliximab-levels

    Australians’ views on carbon pricing before and after the 2013 federal election

    Get PDF
    As climate policies change through the legislative process, public attitudes towards them may change as well. Therefore, it is important to assess how people accept and support controversial climate policies as the policies change over time. Policy acceptance is a positive evaluation of, or attitude towards, an existing policy; policy support adds an active behavioural component1, 3. Acceptance does not necessarily lead to support. We conducted a national survey of Australian residents to investigate acceptance of, and support for, the Australian carbon pricing policy before and after the 2013 federal election, and how perceptions of the policy, economic ideology, and voting behaviour affect acceptance and support. We found acceptance and support were stable across the election period, which was surprising given that climate policy was highly contentious during the election. Policy acceptance was higher than policy support at both times and acceptance was a necessary but insufficient condition of support. We conclude that acceptance is an important process through which perceptions of the policy and economic ideology influence support. Therefore, future climate policy research needs to distinguish between acceptance and support to better understand this process, and to better measure these concepts

    The Properties of Lion Roars and Electron Dynamics in Mirror Mode Waves Observed by the Magnetospheric MultiScale Mission

    Get PDF
    Mirror mode waves are ubiquitous in the Earth's magnetosheath, in particular behind the quasi‐perpendicular shock. Embedded in these nonlinear structures, intense lion roars are often observed. Lion roars are characterized by whistler wave packets at a frequency ∼100 Hz, which are thought to be generated in the magnetic field minima. In this study, we make use of the high time resolution instruments on board the Magnetospheric MultiScale mission to investigate these waves and the associated electron dynamics in the quasi‐perpendicular magnetosheath on 22 January 2016. We show that despite a core electron parallel anisotropy, lion roars can be generated locally in the range 0.05–0.2fce by the perpendicular anisotropy of electrons in a particular energy range. We also show that intense lion roars can be observed up to higher frequencies due to the sharp nonlinear peaks of the signal, which appear as sharp spikes in the dynamic spectra. As a result, a high sampling rate is needed to estimate correctly their amplitude, and the latter might have been underestimated in previous studies using lower time resolution instruments. We also present for the first‐time 3‐D high time resolution electron velocity distribution functions in mirror modes. We demonstrate that the dynamics of electrons trapped in the mirror mode structures are consistent with the Kivelson and Southwood (1996) model. However, these electrons can also interact with the embedded lion roars: first signatures of electron quasi‐linear pitch angle diffusion and possible signatures of nonlinear interaction with high‐amplitude wave packets are presented. These processes can lead to electron untrapping from mirror modes

    Molecular imaging of rheumatoid arthritis by radiolabelled monoclonal antibodies: new imaging strategies to guide molecular therapies

    Get PDF
    The closing of the last century opened a wide variety of approaches for inflammation imaging and treatment of patients with rheumatoid arthritis (RA). The introduction of biological therapies for the management of RA started a revolution in the therapeutic armamentarium with the development of several novel monoclonal antibodies (mAbs), which can be murine, chimeric, humanised and fully human antibodies. Monoclonal antibodies specifically bind to their target, which could be adhesion molecules, activation markers, antigens or receptors, to interfere with specific inflammation pathways at the molecular level, leading to immune-modulation of the underlying pathogenic process. These new generation of mAbs can also be radiolabelled by using direct or indirect method, with a variety of nuclides, depending upon the specific diagnostic application. For studying rheumatoid arthritis patients, several monoclonal antibodies and their fragments, including anti-TNF-α, anti-CD20, anti-CD3, anti-CD4 and anti-E-selectin antibody, have been radiolabelled mainly with 99mTc or 111In. Scintigraphy with these radiolabelled antibodies may offer an exciting possibility for the study of RA patients and holds two types of information: (1) it allows better staging of the disease and diagnosis of the state of activity by early detection of inflamed joints that might be difficult to assess; (2) it might provide a possibility to perform ‘evidence-based biological therapy’ of arthritis with a view to assessing whether an antibody will localise in an inflamed joint before using the same unlabelled antibody therapeutically. This might prove particularly important for the selection of patients to be treated since biological therapies can be associated with severe side-effects and are considerably expensive. This article reviews the use of radiolabelled mAbs in the study of RA with particular emphasis on the use of different radiolabelled monoclonal antibodies for therapy decision-making and follow-up

    CGRPα-Expressing Sensory Neurons Respond to Stimuli that Evoke Sensations of Pain and Itch

    Get PDF
    Calcitonin gene-related peptide (CGRPα, encoded by Calca) is a classic marker of nociceptive dorsal root ganglia (DRG) neurons. Despite years of research, it is unclear what stimuli these neurons detect in vitro or in vivo. To facilitate functional studies of these neurons, we genetically targeted an axonal tracer (farnesylated enhanced green fluorescent protein; GFP) and a LoxP-stopped cell ablation construct (human diphtheria toxin receptor; DTR) to the Calca locus. In culture, 10–50% (depending on ligand) of all CGRPα-GFP-positive (+) neurons responded to capsaicin, mustard oil, menthol, acidic pH, ATP, and pruritogens (histamine and chloroquine), suggesting a role for peptidergic neurons in detecting noxious stimuli and itch. In contrast, few (2.2±1.3%) CGRPα-GFP+ neurons responded to the TRPM8-selective cooling agent icilin. In adult mice, CGRPα-GFP+ cell bodies were located in the DRG, spinal cord (motor neurons and dorsal horn neurons), brain and thyroid—reproducibly marking all cell types known to express Calca. Half of all CGRPα-GFP+ DRG neurons expressed TRPV1, ∼25% expressed neurofilament-200, <10% contained nonpeptidergic markers (IB4 and Prostatic acid phosphatase) and almost none (<1%) expressed TRPM8. CGRPα-GFP+ neurons innervated the dorsal spinal cord and innervated cutaneous and visceral tissues. This included nerve endings in the epidermis and on guard hairs. Our study provides direct evidence that CGRPα+ DRG neurons respond to agonists that evoke pain and itch and constitute a sensory circuit that is largely distinct from nonpeptidergic circuits and TRPM8+/cool temperature circuits. In future studies, it should be possible to conditionally ablate CGRPα-expressing neurons to evaluate sensory and non-sensory functions for these neurons

    A Deep Insight into the Sialome of Rhodnius neglectus, a vector of chagas disease

    Get PDF
    Background Triatomines are hematophagous insects that act as vectors of Chagas disease. Rhodnius neglectus is one of these kissing bugs found, contributing to the transmission of this American trypanosomiasis. The saliva of hematophagous arthropods contains bioactive molecules responsible for counteracting host haemostatic, inflammatory, and immuneresponses. Methods/Principal Findings Next generation sequencing and mass spectrometry-based protein identification were performed to investigate the content of triatomine R. neglectus saliva.We deposited 4,230 coding DNA sequences (CDS) in GenBank. A set of 636 CDS of proteins of putative secretory nature was extracted from the assembled reads, 73 of them confirmed by proteomic analysis. The sialome of R. neglectus was characterized and serine protease transcripts detected. The presence of ubiquitous protein families was revealed, including lipocalins, serine protease inhibitors, and antigen-5. Metalloproteases, disintegrins, and odorant binding protein families were less abundant. Conclusions/Significance The data presented improve our understanding of hematophagous arthropod sialomes, and aid in understanding hematophagy and the complex interplay among vectors and their vertebrate hosts

    Euclid preparation: X. The Euclid photometric-redshift challenge

    Get PDF
    Forthcoming large photometric surveys for cosmology require precise and accurate photometric redshift (photo-z) measurements for the success of their main science objectives. However, to date, no method has been able to produce photo-zs at the required accuracy using only the broad-band photometry that those surveys will provide. An assessment of the strengths and weaknesses of current methods is a crucial step in the eventual development of an approach to meet this challenge. We report on the performance of 13 photometric redshift code single value redshift estimates and redshift probability distributions (PDZs) on a common set of data, focusing particularly on the 0.2−2.6 redshift range that the Euclid mission will probe. We designed a challenge using emulated Euclid data drawn from three photometric surveys of the COSMOS field. The data was divided into two samples: one calibration sample for which photometry and redshifts were provided to the participants; and the validation sample, containing only the photometry to ensure a blinded test of the methods. Participants were invited to provide a redshift single value estimate and a PDZ for each source in the validation sample, along with a rejection flag that indicates the sources they consider unfit for use in cosmological analyses. The performance of each method was assessed through a set of informative metrics, using cross-matched spectroscopic and highlyaccurate photometric redshifts as the ground truth. We show that the rejection criteria set by participants are efficient in removing strong outliers, that is to say sources for which the photo-z deviates by more than 0.15(1 + z) from the spectroscopic-redshift (spec-z). We also show that, while all methods are able to provide reliable single value estimates, several machine-learning methods do not manage to produce useful PDZs. We find that no machine-learning method provides good results in the regions of galaxy color-space that are sparsely populated by spectroscopic-redshifts, for example z > 1. However they generally perform better than template-fitting methods at low redshift (z < 0.7), indicating that template-fitting methods do not use all of the information contained in the photometry. We introduce metrics that quantify both photo-z precision and completeness of the samples (post-rejection), since both contribute to the final figure of merit of the science goals of the survey (e.g., cosmic shear from Euclid). Template-fitting methods provide the best results in these metrics, but we show that a combination of template-fitting results and machine-learning results with rejection criteria can outperform any individual method. On this basis, we argue that further work in identifying how to best select between machine-learning and template-fitting approaches for each individual galaxy should be pursued as a priority

    DNA glycosylases involved in base excision repair may be associated with cancer risk in BRCA1 and BRCA2 mutation carriers

    Get PDF

    Low-mass and sub-stellar eclipsing binaries in stellar clusters

    Full text link
    We highlight the importance of eclipsing double-line binaries in our understanding on star formation and evolution. We review the recent discoveries of low-mass and sub-stellar eclipsing binaries belonging to star-forming regions, open clusters, and globular clusters identified by ground-based surveys and space missions with high-resolution spectroscopic follow-up. These discoveries provide benchmark systems with known distances, metallicities, and ages to calibrate masses and radii predicted by state-of-the-art evolutionary models to a few percent. We report their density and discuss current limitations on the accuracy of the physical parameters. We discuss future opportunities and highlight future guidelines to fill gaps in age and metallicity to improve further our knowledge of low-mass stars and brown dwarfs.Comment: 30 pages, 5 figures, no table. Review pape
    corecore