144 research outputs found

    A Hypothesis for the Evolution of Nuclear-Encoded, Plastid-Targeted Glyceraldehyde-3-Phosphate Dehydrogenase Genes in “Chromalveolate” Members

    Get PDF
    Eukaryotes bearing red alga-derived plastids — photosynthetic alveolates (dinoflagellates plus the apicomplexan Toxoplasma gondii plus the chromerid Chromera velia), photosynthetic stramenopiles, haptophytes, and cryptophytes — possess unique plastid-targeted glyceraldehyde-3-phosphate dehydrogenases (henceforth designated as “GapC1”). Pioneering phylogenetic studies have indicated a single origin of the GapC1 enzymes in eukaryotic evolution, but there are two potential idiosyncrasies in the GapC1 phylogeny: Firstly, the GapC1 tree topology is apparently inconsistent with the organismal relationship among the “GapC1-containing” groups. Secondly, four stramenopile GapC1 homologues are consistently paraphyletic in previously published studies, although these organisms have been widely accepted as monophyletic. For a closer examination of the above issues, in this study GapC1 gene sampling was improved by determining/identifying nine stramenopile and two cryptophyte genes. Phylogenetic analyses of our GapC1 dataset, which is particularly rich in the stramenopile homologues, prompt us to propose a new scenario that assumes multiple, lateral GapC1 gene transfer events to explain the incongruity between the GapC1 phylogeny and the organismal relationships amongst the “GapC1-containing” groups. Under our new scenario, GapC1 genes uniquely found in photosynthetic alveolates, photosynthetic stramenopiles, haptophytes, and cryptopyhytes are not necessarily a character vertically inherited from a common ancestor

    Insight into the proteome of the hyperthermophilic Crenarchaeon Ignicoccus hospitalis: the major cytosolic and membrane proteins

    Get PDF
    Ignicoccus hospitalis, a hyperthermophilic, chemolithoautotrophic Crenarchaeon, is the host of Nanoarchaeum equitans. Together, they form an intimate association, the first among Archaea. Membranes are of fundamental importance for the interaction of I. hospitalis and N. equitans, as they harbour the proteins necessary for the transport of macromolecules like lipids, amino acids, and cofactors between these organisms. Here, we investigated the protein inventory of I. hospitalis cells, and were able to identify 20 proteins in total. Experimental evidence and predictions let us conclude that 11 are soluble cytosolic proteins, eight membrane or membrane-associated proteins, and a single one extracellular. The quantitatively dominating proteins in the cytoplasm (peroxiredoxin; thermosome) antagonize oxidative and temperature stress which I. hospitalis cells are exposed to at optimal growth conditions. Three abundant membrane protein complexes are found: the major protein of the outer membrane, which might protect the cell against the hostile environment, forms oligomeric complexes with pores of unknown selectivity; two other complexes of the cytoplasmic membrane, the hydrogenase and the ATP synthase, play a key role in energy production and conversion

    Red and Green Algal Origin of Diatom Membrane Transporters: Insights into Environmental Adaptation and Cell Evolution

    Get PDF
    Membrane transporters (MTs) facilitate the movement of molecules between cellular compartments. The evolutionary history of these key components of eukaryote genomes remains unclear. Many photosynthetic microbial eukaryotes (e.g., diatoms, haptophytes, and dinoflagellates) appear to have undergone serial endosymbiosis and thereby recruited foreign genes through endosymbiotic/horizontal gene transfer (E/HGT). Here we used the diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum as models to examine the evolutionary origin of MTs in this important group of marine primary producers. Using phylogenomics, we used 1,014 diatom MTs as query against a broadly sampled protein sequence database that includes novel genome data from the mesophilic red algae Porphyridium cruentum and Calliarthron tuberculosum, and the stramenopile Ectocarpus siliculosus. Our conservative approach resulted in 879 maximum likelihood trees of which 399 genes show a non-lineal history between diatoms and other eukaryotes and prokaryotes (at the bootstrap value ≥70%). Of the eukaryote-derived MTs, 172 (ca. 25% of 697 examined phylogenies) have members of both red/green algae as sister groups, with 103 putatively arising from green algae, 19 from red algae, and 50 have an unresolved affiliation to red and/or green algae. We used topology tests to analyze the most convincing cases of non-lineal gene history in which red and/or green algae were nested within stramenopiles. This analysis showed that ca. 6% of all trees (our most conservative estimate) support an algal origin of MTs in stramenopiles with the majority derived from green algae. Our findings demonstrate the complex evolutionary history of photosynthetic eukaryotes and indicate a reticulate origin of MT genes in diatoms. We postulate that the algal-derived MTs acquired via E/HGT provided diatoms and other related microbial eukaryotes the ability to persist under conditions of fluctuating ocean chemistry, likely contributing to their great success in marine environments

    The clinico-radiological paradox of cognitive function and MRI burden of white matter lesions in people with multiple sclerosis: a systematic review and meta-analysis.

    Get PDF
    Moderate correlation exists between the imaging quantification of brain white matter lesions and cognitive performance in people with multiple sclerosis (MS). This may reflect the greater importance of other features, including subvisible pathology, or methodological limitations of the primary literature.To summarise the cognitive clinico-radiological paradox and explore the potential methodological factors that could influence the assessment of this relationship.Systematic review and meta-analysis of primary research relating cognitive function to white matter lesion burden.Fifty papers met eligibility criteria for review, and meta-analysis of overall results was possible in thirty-two (2050 participants). Aggregate correlation between cognition and T2 lesion burden was r = -0.30 (95% confidence interval: -0.34, -0.26). Wide methodological variability was seen, particularly related to key factors in the cognitive data capture and image analysis techniques.Resolving the persistent clinico-radiological paradox will likely require simultaneous evaluation of multiple components of the complex pathology using optimum measurement techniques for both cognitive and MRI feature quantification. We recommend a consensus initiative to support common standards for image analysis in MS, enabling benchmarking while also supporting ongoing innovation

    Varieties of living things: Life at the intersection of lineage and metabolism

    Get PDF
    publication-status: Publishedtypes: Articl
    corecore