23,755 research outputs found

    Weak decays of medium and heavy Lambda-hypernuclei

    Full text link
    We have made a new evaluation of the Lambda decay width in nuclear matter within the Propagator Method. Through the Local Density Approximation it is possible to obtain results in finite nuclei. We have also studied the dependence of the widths on the N-N and Lambda-N short range correlations. Using reasonable values for the parameters that control these correlations, as well as realistic nuclear densities and Lambda wave functions, we reproduce, for the first time, the experimental non-mesonic widths in a wide range of mass numbers (from medium to heavy hypernuclei).Comment: 22 pages, including 5 figure

    Multi-Kˉ\bar{K} nuclei and kaon condensation

    Full text link
    We extend previous relativistic mean-field (RMF) calculations of multi-Kˉ\bar K nuclei, using vector boson fields with SU(3) PPV coupling constants and scalar boson fields constrained phenomenologically. For a given core nucleus, the resulting Kˉ\bar K separation energy BKˉB_{\bar K}, as well as the associated nuclear and Kˉ\bar K-meson densities, saturate with the number κ\kappa of Kˉ\bar K mesons for κ>κsat10\kappa > \kappa_{\rm sat} \sim 10. Saturation appears robust against a wide range of variations, including the RMF nuclear model used and the type of boson fields mediating the strong interactions. Because BKˉB_{\bar K} generally does not exceed 200 MeV, it is argued that multi-Kˉ\bar K nuclei do not compete with multihyperonic nuclei in providing the ground state of strange hadronic configurations and that kaon condensation is unlikely to occur in strong-interaction self-bound strange hadronic matter. Last, we explore possibly self-bound strange systems made of neutrons and Kˉ0{\bar K}^0 mesons, or protons and KK^- mesons, and study their properties.Comment: 21 pages, 8 figures, revised text and reference

    Kinetic Ising System in an Oscillating External Field: Stochastic Resonance and Residence-Time Distributions

    Full text link
    Experimental, analytical, and numerical results suggest that the mechanism by which a uniaxial single-domain ferromagnet switches after sudden field reversal depends on the field magnitude and the system size. Here we report new results on how these distinct decay mechanisms influence hysteresis in a two-dimensional nearest-neighbor kinetic Ising model. We present theoretical predictions supported by numerical simulations for the frequency dependence of the probability distributions for the hysteresis-loop area and the period-averaged magnetization, and for the residence-time distributions. The latter suggest evidence of stochastic resonance for small systems in moderately weak oscillating fields.Comment: Includes updated results for Fig.2 and minor text revisions to the abstract and text for clarit

    Dynamically generated open charmed baryons beyond the zero range approximation

    Get PDF
    The interaction of the low lying pseudo-scalar mesons with the ground state baryons in the charm sector is studied within a coupled channel approach using a t-channel vector-exchange driving force. The amplitudes describing the scattering of the pseudo-scalar mesons off the ground-state baryons are obtained by solving the Lippmann--Schwinger equation. We analyze in detail the effects of going beyond the t=0t=0 approximation. Our model predicts the dynamical generation of several open charmed baryon resonances in different isospin and strangeness channels, some of which can be clearly identified with recently observed states.Comment: 7 figures, 8 table

    Space program: Space debris a potential threat to Space Station and shuttle

    Get PDF
    Experts estimate that more than 3.5 million man-made objects are orbiting the earth. These objects - space debris - include whole and fragmentary parts of rocket bodies and other discarded equipment from space missions. About 24,500 of these objects are 1 centimeter across or larger. A 1-centimeter man-made object travels in orbit at roughly 22,000 miles per hour. If it hit a spacecraft, it would do about the same damage as would a 400-pound safe traveling at 60 miles per hour. The Government Accounting Office (GAO) reviews NASA's plans for protecting the space station from debris, the extent and precision of current NASA and Defense Department (DOD) debris-tracking capabilities, and the extent to which debris has already affected shuttle operations. GAO recommends that the space debris model be updated, and that the findings be incorporated into the plans for protecting the space station from such debris. GAO further recommends that the increased risk from debris to the space shuttle operations be analyzed

    Lasso Estimation of an Interval-Valued Multiple Regression Model

    Full text link
    A multiple interval-valued linear regression model considering all the cross-relationships between the mids and spreads of the intervals has been introduced recently. A least-squares estimation of the regression parameters has been carried out by transforming a quadratic optimization problem with inequality constraints into a linear complementary problem and using Lemke's algorithm to solve it. Due to the irrelevance of certain cross-relationships, an alternative estimation process, the LASSO (Least Absolut Shrinkage and Selection Operator), is developed. A comparative study showing the differences between the proposed estimators is provided

    The entropy of a correlated system of nucleons

    Get PDF
    Realistic nucleon-nucleon interaction induce correlations to the nuclear many-body system which lead to a fragmentation of the single-particle strength over a wide range of energies and momenta. We address the question of how this fragmentation affects the thermodynamical properties of nuclear matter. In particular, we show that the entropy can be computed with the help of a spectral function which can be evaluated in terms of the self-energy obtained in the Self-Consistent Green's Function approach. Results for the density and temperature dependences of the entropy per particle for symmetric nuclear matter are presented and compared to the results of lowest order finite temperature Brueckner--Hartree--Fock calculations. The effects of correlations on the calculated entropy are small, if the appropriate quasi-particle approximation is used. The results demonstrate the thermodynamical consistency of the self-consistent T-matrix approximation for the evaluation of the Green's functions.Comment: REVTEX4 - 43 pages, 10 figures - Published versio

    The entropy of a correlated system of nucleons

    Get PDF
    Realistic nucleon-nucleon interaction induce correlations to the nuclear many-body system which lead to a fragmentation of the single-particle strength over a wide range of energies and momenta. We address the question of how this fragmentation affects the thermodynamical properties of nuclear matter. In particular, we show that the entropy can be computed with the help of a spectral function which can be evaluated in terms of the self-energy obtained in the Self-Consistent Green's Function approach. Results for the density and temperature dependences of the entropy per particle for symmetric nuclear matter are presented and compared to the results of lowest order finite temperature Brueckner--Hartree--Fock calculations. The effects of correlations on the calculated entropy are small, if the appropriate quasi-particle approximation is used. The results demonstrate the thermodynamical consistency of the self-consistent T-matrix approximation for the evaluation of the Green's functions.Comment: REVTEX4 - 43 pages, 10 figures - Published versio
    corecore