24,999 research outputs found

    Explicit minimal Scherk saddle towers of arbitrary even genera in R3\R^3

    Get PDF
    Starting from works by Scherk (1835) and by Enneper-Weierstra\ss \ (1863), new minimal surfaces with Scherk ends were found only in 1988 by Karcher (see \cite{Karcher1,Karcher}). In the singly periodic case, Karcher's examples of positive genera had been unique until Traizet obtained new ones in 1996 (see \cite{Traizet}). However, Traizet's construction is implicit and excludes {\it towers}, namely the desingularisation of more than two concurrent planes. Then, new explicit towers were found only in 2006 by Martin and Ramos Batista (see \cite{Martin}), all of them with genus one. For genus two, the first such towers were constructed in 2010 (see \cite{Valerio2}). Back to 2009, implicit towers of arbitrary genera were found in \cite{HMM}. In our present work we obtain {\it explicit} minimal Scherk saddle towers, for any given genus 2k2k, k≥3k\ge3

    WISE morphological study of Wolf-Rayet nebulae

    Full text link
    We present a morphological study of nebulae around Wolf-Rayet (WR) stars using archival narrow-band optical and Wide-field Infrared Survey Explorer (WISE) infrared images. The comparison among WISE images in different bands and optical images proves to be a very efficient procedure to identify the nebular emission from WR nebulae, and to disentangle it from that of the ISM material along the line of sight. In particular, WR nebulae are clearly detected in the WISE W4 band at 22 μ\mum. Analysis of available mid-IR Spitzer spectra shows that the emission in this band is dominated by thermal emission from dust spatially coincident with the thin nebular shell or most likely with the leading edge of the nebula. The WR nebulae in our sample present different morphologies that we classified into well defined WR bubbles (bubble B{\cal B}-type nebulae), clumpy and/or disrupted shells (clumpy/disrupted C{\cal C}-type nebulae), and material mixed with the diffuse medium (mixed M{\cal M}-type nebulae). The variety of morphologies presented by WR nebulae shows a loose correlation with the central star spectral type, implying that the nebular and stellar evolutions are not simple and may proceed according to different sequences and time-lapses. We report the discovery of an obscured shell around WR35 only detected in the infrared.Comment: 11 pages, 6 figures, plus 23 appendix figures; to appear in Astronomy and Astrophysic

    Advanced Forward Modeling and Inversion of Stokes Profiles Resulting from the Joint Action of the Hanle and Zeeman Effects

    Full text link
    A big challenge in solar and stellar physics in the coming years will be to decipher the magnetism of the solar outer atmosphere (chromosphere and corona) along with its dynamic coupling with the magnetic fields of the underlying photosphere. To this end, it is important to develop rigorous diagnostic tools for the physical interpretation of spectropolarimetric observations in suitably chosen spectral lines. Here we present a computer program for the synthesis and inversion of Stokes profiles caused by the joint action of atomic level polarization and the Hanle and Zeeman effects in some spectral lines of diagnostic interest, such as those of the He I 10830 A and D_3 multiplets. It is based on the quantum theory of spectral line polarization, which takes into account all the relevant physical mechanisms and ingredients (optical pumping, atomic level polarization, Zeeman, Paschen-Back and Hanle effects). The influence of radiative transfer on the emergent spectral line radiation is taken into account through a suitable slab model. The user can either calculate the emergent intensity and polarization for any given magnetic field vector or infer the dynamical and magnetic properties from the observed Stokes profiles via an efficient inversion algorithm based on global optimization methods. The reliability of the forward modeling and inversion code presented here is demonstrated through several applications, which range from the inference of the magnetic field vector in solar active regions to determining whether or not it is canopy-like in quiet chromospheric regions. This user-friendly diagnostic tool called "HAZEL" (from HAnle and ZEeman Light) is offered to the astrophysical community, with the hope that it will facilitate new advances in solar and stellar physics.Comment: 62 pages, 19 figures, 3 tables. Accepted for publication in Ap

    Experimental status of deeply bound kaonic states in nuclei

    Full text link
    We review recent claims of the existence of deeply bound kaonic states in nuclei. Also we study in details the (K-,p) reaction on C12 with 1 GeV/c momentum kaon beam, based on which a deep kaon nucleus optical potential was claimed in [1]. In our Monte Carlo simulation of this reaction we include not only the quasi-elastic K- p scattering, as in [1], but also K- absorption by one and two nucleons followed by the decay of the hyperon in pi N, which can also produce strength in the region of interest. The final state interactions in terms of multiple scattering of the K-, p and all other primary particles on their way out of the nucleus is also considered. We will show that all these additional mechanisms allow us to explain the observed spectrum with a "standard" shallow kaon nucleus optical potential obtained in chiral models. [1] T. Kishimoto et al., Prog. Theor. Phys. 118, 181 (2007).Comment: 5 pages, 3 figures. To be published in the Proceedings of the International Workshop on Chiral Symmetry in Hadrons and Nuclei (Chiral10), Valencia, Spain, June 21-24, 201

    Dichroic Masers due to Radiation Anisotropy and the Influence of the Hanle Effect on the Circumstellar SiO Polarization

    Full text link
    The theory of the generation and transfer of polarized radiation, mainly developed for interpreting solar spectropolarimetric observations, allows to reconsider, in a more rigorous and elegant way, a physical mechanism that has been suggested some years ago to interpret the high degree of polarization often observed in astronomical masers. This mechanism, for which the name of 'dichroic maser' is proposed, can operate when a low density molecular cloud is illuminated by an anisotropic source of radiation (like for instance a nearby star). Here we investigate completely unsaturated masers and show that selective stimulated emission processes are capable of producing highly polarized maser radiation in a non-magnetic environment. The polarization of the maser radiation is linear and is directed tangentially to a ring equidistant to the central star. We show that the Hanle effect due to the presence of a magnetic field can produce a rotation (from the tangential direction) of the polarization by more that 45 degrees for some selected combinations of the strength, inclination and azimuth of the magnetic field vector. However, these very same conditions produce a drastic inhibition of the maser effect. The rotations of about 90 degrees observed in SiO masers in the evolved stars TX Cam by Kemball & Diamond (1997) and IRC+10011 by Desmurs et al (2000) may then be explainedby a local modification of the anisotropy of the radiation field, being transformed from mainly radial to mainly tangential.Comment: Accepted for publication on Ap

    A theoretical description of energy spectra and two-neutron separation energies for neutron-rich zirconium isotopes

    Get PDF
    Very recently the atomic masses of neutron-rich Zr isotopes, from 96^{96}Zr to 104^{104}Zr, have been measured with high precision. Using a schematic Interacting Boson Model (IBM) Hamiltonian, the evolution from spherical to deformed shapes along the chain of Zr isotopes, describing at the same time the excitation energies as well as the two-neutron separation energies, can be rather well reproduced. The interplay between phase transitions and configuration mixing of intruder excitations in this mass region is succinctly addressed.Comment: Accepted in European Journal of Physics
    • …
    corecore