24,999 research outputs found
Explicit minimal Scherk saddle towers of arbitrary even genera in
Starting from works by Scherk (1835) and by Enneper-Weierstra\ss \ (1863),
new minimal surfaces with Scherk ends were found only in 1988 by Karcher (see
\cite{Karcher1,Karcher}). In the singly periodic case, Karcher's examples of
positive genera had been unique until Traizet obtained new ones in 1996 (see
\cite{Traizet}). However, Traizet's construction is implicit and excludes {\it
towers}, namely the desingularisation of more than two concurrent planes. Then,
new explicit towers were found only in 2006 by Martin and Ramos Batista (see
\cite{Martin}), all of them with genus one. For genus two, the first such
towers were constructed in 2010 (see \cite{Valerio2}). Back to 2009, implicit
towers of arbitrary genera were found in \cite{HMM}. In our present work we
obtain {\it explicit} minimal Scherk saddle towers, for any given genus ,
WISE morphological study of Wolf-Rayet nebulae
We present a morphological study of nebulae around Wolf-Rayet (WR) stars
using archival narrow-band optical and Wide-field Infrared Survey Explorer
(WISE) infrared images. The comparison among WISE images in different bands and
optical images proves to be a very efficient procedure to identify the nebular
emission from WR nebulae, and to disentangle it from that of the ISM material
along the line of sight. In particular, WR nebulae are clearly detected in the
WISE W4 band at 22 m. Analysis of available mid-IR Spitzer spectra shows
that the emission in this band is dominated by thermal emission from dust
spatially coincident with the thin nebular shell or most likely with the
leading edge of the nebula. The WR nebulae in our sample present different
morphologies that we classified into well defined WR bubbles (bubble -type nebulae), clumpy and/or disrupted shells (clumpy/disrupted -type nebulae), and material mixed with the diffuse medium (mixed -type nebulae). The variety of morphologies presented by WR nebulae shows a
loose correlation with the central star spectral type, implying that the
nebular and stellar evolutions are not simple and may proceed according to
different sequences and time-lapses. We report the discovery of an obscured
shell around WR35 only detected in the infrared.Comment: 11 pages, 6 figures, plus 23 appendix figures; to appear in Astronomy
and Astrophysic
Advanced Forward Modeling and Inversion of Stokes Profiles Resulting from the Joint Action of the Hanle and Zeeman Effects
A big challenge in solar and stellar physics in the coming years will be to
decipher the magnetism of the solar outer atmosphere (chromosphere and corona)
along with its dynamic coupling with the magnetic fields of the underlying
photosphere. To this end, it is important to develop rigorous diagnostic tools
for the physical interpretation of spectropolarimetric observations in suitably
chosen spectral lines. Here we present a computer program for the synthesis and
inversion of Stokes profiles caused by the joint action of atomic level
polarization and the Hanle and Zeeman effects in some spectral lines of
diagnostic interest, such as those of the He I 10830 A and D_3 multiplets. It
is based on the quantum theory of spectral line polarization, which takes into
account all the relevant physical mechanisms and ingredients (optical pumping,
atomic level polarization, Zeeman, Paschen-Back and Hanle effects). The
influence of radiative transfer on the emergent spectral line radiation is
taken into account through a suitable slab model. The user can either calculate
the emergent intensity and polarization for any given magnetic field vector or
infer the dynamical and magnetic properties from the observed Stokes profiles
via an efficient inversion algorithm based on global optimization methods. The
reliability of the forward modeling and inversion code presented here is
demonstrated through several applications, which range from the inference of
the magnetic field vector in solar active regions to determining whether or not
it is canopy-like in quiet chromospheric regions. This user-friendly diagnostic
tool called "HAZEL" (from HAnle and ZEeman Light) is offered to the
astrophysical community, with the hope that it will facilitate new advances in
solar and stellar physics.Comment: 62 pages, 19 figures, 3 tables. Accepted for publication in Ap
Experimental status of deeply bound kaonic states in nuclei
We review recent claims of the existence of deeply bound kaonic states in
nuclei. Also we study in details the (K-,p) reaction on C12 with 1 GeV/c
momentum kaon beam, based on which a deep kaon nucleus optical potential was
claimed in [1]. In our Monte Carlo simulation of this reaction we include not
only the quasi-elastic K- p scattering, as in [1], but also K- absorption by
one and two nucleons followed by the decay of the hyperon in pi N, which can
also produce strength in the region of interest. The final state interactions
in terms of multiple scattering of the K-, p and all other primary particles on
their way out of the nucleus is also considered. We will show that all these
additional mechanisms allow us to explain the observed spectrum with a
"standard" shallow kaon nucleus optical potential obtained in chiral models.
[1] T. Kishimoto et al., Prog. Theor. Phys. 118, 181 (2007).Comment: 5 pages, 3 figures. To be published in the Proceedings of the
International Workshop on Chiral Symmetry in Hadrons and Nuclei (Chiral10),
Valencia, Spain, June 21-24, 201
Dichroic Masers due to Radiation Anisotropy and the Influence of the Hanle Effect on the Circumstellar SiO Polarization
The theory of the generation and transfer of polarized radiation, mainly
developed for interpreting solar spectropolarimetric observations, allows to
reconsider, in a more rigorous and elegant way, a physical mechanism that has
been suggested some years ago to interpret the high degree of polarization
often observed in astronomical masers. This mechanism, for which the name of
'dichroic maser' is proposed, can operate when a low density molecular cloud is
illuminated by an anisotropic source of radiation (like for instance a nearby
star). Here we investigate completely unsaturated masers and show that
selective stimulated emission processes are capable of producing highly
polarized maser radiation in a non-magnetic environment. The polarization of
the maser radiation is linear and is directed tangentially to a ring
equidistant to the central star. We show that the Hanle effect due to the
presence of a magnetic field can produce a rotation (from the tangential
direction) of the polarization by more that 45 degrees for some selected
combinations of the strength, inclination and azimuth of the magnetic field
vector. However, these very same conditions produce a drastic inhibition of the
maser effect. The rotations of about 90 degrees observed in SiO masers in the
evolved stars TX Cam by Kemball & Diamond (1997) and IRC+10011 by Desmurs et al
(2000) may then be explainedby a local modification of the anisotropy of the
radiation field, being transformed from mainly radial to mainly tangential.Comment: Accepted for publication on Ap
A theoretical description of energy spectra and two-neutron separation energies for neutron-rich zirconium isotopes
Very recently the atomic masses of neutron-rich Zr isotopes, from Zr
to Zr, have been measured with high precision. Using a schematic
Interacting Boson Model (IBM) Hamiltonian, the evolution from spherical to
deformed shapes along the chain of Zr isotopes, describing at the same time the
excitation energies as well as the two-neutron separation energies, can be
rather well reproduced. The interplay between phase transitions and
configuration mixing of intruder excitations in this mass region is succinctly
addressed.Comment: Accepted in European Journal of Physics
- …