26,624 research outputs found

    Clear detection of dusty torus signatures in a Weak-Line Radio Galaxy: the case of PKS 0043-42

    Get PDF
    We report the clearest detection to date of dusty torus signatures in a Weak-Line Radio Galaxy (WLRG). The deep Spitzer InfraRed Spectrograph (IRS) rest-frame mid-infrared (MIR) spectrum of the WLRG PKS 0043-42 (z=0.116) shows a clear spectral turnover at wavelengths longer than ~20 micron suggestive of warm dust, as well as a 9.7 micron silicate absorption feature. In addition, the hard X-ray results, based on Chandra data, strongly support a picture in which PKS 0043-42 has a torus and accretion disc more typical of Strong-Line Radio Galaxies (SLRGs). The MIR and X-ray spectra are markedly different from those of other WLRGs at similar redshifts, and here we show that the former can be successfully fitted with clumpy torus models with parameters characteristic of Type-2 AGN tori: close to edge-on (i=74 deg) and relatively broad (torus angular width=60 deg), with an outer radius of 2 pc, hydrogen column density ~1.6x10^(23) cm^(-2), and AGN bolometric luminosity ~1.6x10^(44) erg s^(-1). The presence of a compact torus in PKS 0043-42 provides evidence that this WLRG is fuelled by cold, rather than hot, gas accretion. We suggest that WLRGs are a diverse population, and PKS 0043-42 may represent a type of radio galaxy in which the AGN activity has been recently re-triggered as a consequence of intermittent gas supply, or in which the covering factor of the Narrow-Line Region (NLR) clouds is relatively low.Comment: 7 pages, 6 figures, 1 table. Accepted by MNRA

    Shape evolution and shape coexistence in Pt isotopes: comparing interacting boson model configuration mixing and Gogny mean-field energy surfaces

    Get PDF
    The evolution of the total energy surface and the nuclear shape in the isotopic chain 172194^{172-194}Pt are studied in the framework of the interacting boson model, including configuration mixing. The results are compared with a self-consistent Hartree-Fock-Bogoliubov calculation using the Gogny-D1S interaction and a good agreement between both approaches shows up. The evolution of the deformation parameters points towards the presence of two different coexisting configurations in the region 176 \leq A \leq 186.Comment: Submitted to PR

    K- absorption in nuclei by two and three nucleons

    Full text link
    It will be shown that the peaks in the (Lambda p) and (Lambda d) invariant mass distributions, observed in recent FINUDA experiments and claimed to be signals of deeply bound kaonic states, are naturally explained in terms of K- absorption by two or three nucleons leaving the rest of the original nuclei as spectator. For reactions on heavy nuclei, the subsequent interactions of the particles produced in the primary absorption process with the residual nucleus play an important role. Our analyses leads to the conclusion that at present there is no experimental evidence of deeply bound K- state in nuclei. Although the FINUDA experiments have been done for reasons which are not supported a posteriori, some new physics can be extracted from the data.Comment: 6 pages, 5 figures. Talk presented at the International Conference on Exotic Atoms "EXA 2008", Vienna, Austria, September 15-18, 200

    Nonequilibrium Precursor Model for the Onset of Percolation in a Two-Phase System

    Get PDF
    Using a Boltzmann equation, we investigate the nonequilibrium dynamics of nonperturbative fluctuations within the context of Ginzburg-Landau models. As an illustration, we examine how a two-phase system initially prepared in a homogeneous, low-temperature phase becomes populated by precursors of the opposite phase as the temperature is increased. We compute the critical value of the order parameter for the onset of percolation, which signals the breakdown of the conventional dilute gas approximation.Comment: 4 pages, 4 eps figures (uses epsf), Revtex. Replaced with version in press Physical Review

    Latest results for the antikaon-nucleon optical potential

    Get PDF
    The key question of this letter is whether the K-nucleus optical potential is deep, as it is prefered by the phenomenological fits to kaonic atoms data, or shallow, as it comes out from unitary chiral model calculations. The current experimental situation is reviewed.Comment: 3 pages, 1 figure. Presented at the 21st European Conference on the Few-Body problems in Physics (EFB21), Salamanca, Spain, August 29 - September 3, 201

    Projection effects in galaxy cluster samples: insights from X-ray redshifts

    Full text link
    Up to now, the largest sample of galaxy clusters selected in X-rays comes from the ROSAT All-Sky Survey (RASS). Although there have been many interesting clusters discovered with the RASS data, the broad point spread function (PSF) of the ROSAT satellite limits the amount of spatial information of the detected objects. This leads to the discovery of new cluster features when a re-observation is performed with higher resolution X-ray satellites. Here we present the results from XMM-Newton observations of three clusters: RXCJ2306.6-1319, ZwCl1665 and RXCJ0034.6-0208, for which the observations reveal a double or triple system of extended components. These clusters belong to the extremely expanded HIghest X-ray FLUx Galaxy Cluster Sample (eeHIFLUGCS), which is a flux-limited cluster sample (fX,5005×1012f_\textrm{X,500}\geq 5\times10^{-12} erg s1^{-1} cm2^{-2} in the 0.12.40.1-2.4 keV energy band). For each structure in each cluster, we determine the redshift with the X-ray spectrum and find that the components are not part of the same cluster. This is confirmed by an optical spectroscopic analysis of the galaxy members. Therefore, the total number of clusters is actually 7 and not 3. We derive global cluster properties of each extended component. We compare the measured properties to lower-redshift group samples, and find a good agreement. Our flux measurements reveal that only one component of the ZwCl1665 cluster has a flux above the eeHIFLUGCS limit, while the other clusters will no longer be part of the sample. These examples demonstrate that cluster-cluster projections can bias X-ray cluster catalogues and that with high-resolution X-ray follow-up this bias can be corrected

    Spectral microscopic mechanisms and quantum phase transitions in a 1D correlated problem

    Full text link
    In this paper we study the dominant microscopic processes that generate nearly the whole one-electron removal and addition spectral weight of the one-dimensional Hubbard model for all values of the on-site repulsion UU. We find that for the doped Mott-Hubbard insulator there is a competition between the microscopic processes that generate the one-electron upper-Hubbard band spectral-weight distributions of the Mott-Hubbard insulating phase and finite-doping-concentration metallic phase, respectively. The spectral-weight distributions generated by the non-perturbative processes studied here are shown elsewhere to agree quantitatively for the whole momentum and energy bandwidth with the peak dispersions observed by angle-resolved photoelectron spectroscopy in quasi-one-dimensional compounds.Comment: 18 pages, 2 figure

    Reduced sensitivity of the (d,p)(d, p) cross sections to the deuteron model beyond adiabatic approximation

    Get PDF
    It has recently been reported [Phys. Rev. Lett. 117, 162502 (2016)] that (d, p) cross sections can be very sensitive to the n-p interactions used in the adiabatic treatment of deuteron breakup with nonlocal nucleon-target optical potentials. To understand to what extent this sensitivity could originate in the inaccuracy of the adiabatic approximation we have developed a leading-order local- equivalent continuum-discretized coupled-channel model that accounts for non-adiabatic effects in the presence of nonlocality of nucleon optical potentials. We have applied our model to the astro- physically relevant reaction 26m^{26m}Al(d,p)27(d, p) ^{27}Al using two different n-p potentials associated with the lowest and the highest n-p kinetic energy in the short-range region of their interaction, respectively. Our calculations reveal a significant reduction of the sensitivity to the high n-p momenta thus confirming that it is mostly associated with theoretical uncertainties of the adiabatic approximation itself. The non-adiabatic effects in the presence of nonlocality were found to be stronger than those in the case of the local optical potentials. These results argue for extending the analysis of the (d,p)(d, p) reactions, measured for spectroscopic studies, beyond the adiabatic approximation.Comment: 6 pages, 3 figure

    Perey-effect in Continuum-Discretized Coupled-Channel description of (d,p)(d,p) reactions

    Full text link
    The Perey-effect in two-body channels of (d,p)(d,p) reactions has been known for a long time. It arises when the nonlocal two-body deuteron-target and/or proton-target problem is approximated by a local one, manifesting itself in a reduction of the scattering channel wave functions in the nuclear interior. However, the (d,p)(d,p) reaction mechanism requires explicit accounting for three-body dynamics involving the target and the neutron and proton in the deuteron. Treating nonlocality of the nucleon-target interactions within a three-body context requires significant effort and demands going beyond the widely-used adiabatic approximation, which can be done using a continuum-discretized coupled-channel (CDCC) method. However, the inclusion of nonlocal interactions into the CDCC description of (d,p)(d,p) reactions has not been developed yet. Here, we point out that, similarly to the two-body nonlocal case, nonlocality in a three-body channel can be accounted for by introducing the Perey factors. We explain this procedure and present the first CDCC calculations to our knowledge including the Perey-effect.Comment: 13 pages, 2 figure
    corecore