15 research outputs found
Genomic differentiation during speciation-with-gene-flow: Comparing geographic and host-related variation in divergent life history adaptation in rhagoletis pomonella
A major goal of evolutionary biology is to understand how variation within populations gets partitioned into differences between reproductively isolated species. Here, we examine the degree to which diapause life history timing, a critical adaptation promoting population divergence, explains geographic and host-related genetic variation in ancestral hawthorn and recently derived apple-infesting races of Rhagoletis pomonella. Our strategy involved combining experiments on two different aspects of diapause (initial diapause intensity and adult eclosion time) with a geographic survey of genomic variation across four sites where apple and hawthorn flies co-occur from north to south in the Midwestern USA. The results demonstrated that the majority of the genome showing significant geographic and host-related variation can be accounted for by initial diapause intensity and eclosion time. Local genomic differences between sympatric apple and hawthorn flies were subsumed within broader geographic clines; allele frequency differences within the races across the Midwest were two to three-fold greater than those between the races in sympatry. As a result, sympatric apple and hawthorn populations displayed more limited genomic clustering compared to geographic populations within the races. The findings suggest that with reduced gene flow and increased selection on diapause equivalent to that seen between geographic sites, the host races may be recognized as different genotypic entities in sympatry, and perhaps species, a hypothesis requiring future genomic analysis of related sibling species to R. pomonella to test. Our findings concerning the way selection and geography interplay could be of broad significance for many cases of earlier stages of divergence-with-gene flow, including (1) where only modest increases in geographic isolation and the strength of selection may greatly impact genetic coupling and (2) the dynamics of how spatial and temporal standing variation is extracted by selection to generate differences between new and discrete units of biodiversity
Standing geographic variation in eclosion time and the genomics of host race formation in Rhagoletis pomonella fruit flies.
Taxa harboring high levels of standing variation may be more likely to adapt to rapid environmental shifts and experience ecological speciation. Here, we characterize geographic and host-related differentiation for 10,241 single nucleotide polymorphisms in Rhagoletis pomonella fruit flies to infer whether standing genetic variation in adult eclosion time in the ancestral hawthorn (Crataegus spp.)-infesting host race, as opposed to new mutations, contributed substantially to its recent shift to earlier fruiting apple (Malus domestica). Allele frequency differences associated with early vs. late eclosion time within each host race were significantly related to geographic genetic variation and host race differentiation across four sites, arrayed from north to south along a 430-km transect, where the host races co-occur in sympatry in the Midwest United States. Host fruiting phenology is clinal, with both apple and hawthorn trees fruiting earlier in the North and later in the South. Thus, we expected alleles associated with earlier eclosion to be at higher frequencies in northern populations. This pattern was observed in the hawthorn race across all four populations; however, allele frequency patterns in the apple race were more complex. Despite the generally earlier eclosion timing of apple flies and corresponding apple fruiting phenology, alleles on chromosomes 2 and 3 associated with earlier emergence were paradoxically at lower frequency in the apple than hawthorn host race across all four sympatric sites. However, loci on chromosome 1 did show higher frequencies of early eclosion-associated alleles in the apple than hawthorn host race at the two southern sites, potentially accounting for their earlier eclosion phenotype. Thus, although extensive clinal genetic variation in the ancestral hawthorn race exists and contributed to the host shift to apple, further study is needed to resolve details of how this standing variation was selected to generate earlier eclosing apple fly populations in the North
Estudos sobre a cinética de absorção do fósforo pelo arroz (Oryza sativa L.) e pelo feijoeiro (Phaseolus vulgaris L.)
Objetivando caracterizar os efeitos das diferentes concentrações de fósforo e da presença de outros íons na cinética de absorção de radiofósforo, foram conduzidos ensaios em solução nutritiva, em condições ambientais controladas. Foram empregadas raízes destacadas de arrroz e feijão para os estudos com diferentes concentrações de fósforo no meio (10-7 M até 5 x 10-2 M) e para avaliar as interações promovidas por Mg+2, Al+3, K+, NH4+, N-NO3-, N-urêia no mecanismo de absorção por períodos de uma hora e meia a duas horas. Em plantas inteiras de arroz procurou-se avaliar os efeitos da presença de Mg e/ou alumínio na absorção e transporte de fósforo quando variava a concentração externa (1 ppm, 5 ppm, 10 ppm e 20 ppm) por um período de 17 horas. Foi constatado um mecanismo duplo de absorção com as duas fases seguindo a cinética simples de Michaelis-Menten, e com ponto de transição entre 1-50x10-5. A transformada de dados segundo Hofstee adaptou-se melhor à interpretação dos dados experimentais. Feijão foi mais eficientes na absorção que arroz para a primeira fase (maior Vmax). Alumínio apresentou efeito estimulatório nítido na absorção de fósforo, promovendo porém, a fixação do ânion na raiz quando consideradas as concentrações mais baixas. Em concentrações altas de P, este último efeito não foi evidenciado. Magnésio não promoveu maior absorção, nem maior transporte do que K+; o mesmo aconteceu com as diferentes formas de nitrogênio. Uréia poderia ter um efeito depressivo maior, embora não significativo. Discutem-se os prováveis mecanismos envolvidos nestas respostas.Three experiments were conducted under controlled conditions with the objectives of evaluating the effect of different concentrations of phosphorus and on the presence of other ions on the kinetic of absorption. Excised roots of rice and bean were placed in aereated solutions containing increasing concentrations of NaH2PO4 (10-7 M to 5x10-2M) during 90 minutes. The rate of absorption (v = mmols P/g dry matter) and the kinetic constants Vmax and Km were determined. Similar procedure was used to to evaluate the interaction of Mg+2, Al+3, K+, N-NH4+, N-NO3- and N-ureia in the uptake of phosphorus during 120 minutes. In another experiment, the effect of the presence of Mg+2 and/for Al+3 in the uptake and redistribution of phosphorus, was evaluated by varying the external concentration (1 ppm, 5 ppm, 10 ppm and 20 ppm) during a period of 17 hours, and utilizing whole rice plants. It was observed a dual mechanism, with two phases following the Michaelis-Menten kinetics and with transition phase 1 - 50 x 10-5 M. The best explanation of the experimental data was obtained, by transforming the data in accordance with HOFSTEE (1952). Bean was more efficient than rice in the first phase of uptake (higher Vmax). Al+3 had a clear stimulatory effect on the uptake of phosphorus, promoting, however, the anion fixation in the root at lower concentrations. At the highest concentrations (20 ppm) of phosphorus this effect was not evident. No effect on the uptake was observed with Mg+2, K+ and different forms of nitrogen. Urea could have a depressive effect although, not significant. Possible mechanisms invelved are discussed