1,703 research outputs found
Quantum correlation dynamics in photosynthetic processes assisted by molecular vibrations
During the long course of evolution, nature has learnt how to exploit quantum
effects. In fact, recent experiments reveal the existence of quantum processes
whose coherence extends over unexpectedly long time and space ranges. In
particular, photosynthetic processes in light-harvesting complexes display a
typical oscillatory dynamics ascribed to quantum coherence. Here, we consider
the simple model where a dimer made of two chromophores is strongly coupled
with a quasi-resonant vibrational mode. We observe the occurrence of wide
oscillations of genuine quantum correlations, between electronic excitations
and the environment, represented by vibrational bosonic modes. Such a quantum
dynamics has been unveiled through the calculation of the negativity of
entanglement and the discord, indicators widely used in quantum information for
quantifying the resources needed to realize quantum technologies. We also
discuss the possibility of approximating additional weakly-coupled off-resonant
vibrational modes, simulating the disturbances induced by the rest of the
environment, by a single vibrational mode.
Within this approximation, one can show that the off-resonant bath behaves
like a classical source of noise
Where do bosons actually belong?
We explore a variety of reasons for considering su(1,1) instead of the
customary h(1) as the natural unifying frame for characterizing boson systems.
Resorting to the Lie-Hopf structure of these algebras, that shows how the
Bose-Einstein statistics for identical bosons is correctly given in the su(1,1)
framework, we prove that quantization of Maxwell's equations leads to su(1,1),
relativistic covariance being naturally recognized as an internal symmetry of
this dynamical algebra. Moreover su(1,1) rather than h(1) coordinates are
associated to circularly polarized electromagnetic waves. As for interacting
bosons, the su(1,1) formulation of the Jaynes-Cummings model is discussed,
showing its advantages over h(1).Comment: 9 pages, to appear in J. Phys. A: Math. Theo
Protein adsorption onto Fe3O4 nanoparticles with opposite surface charge and its impact on cell uptake
Nanoparticles (NPs) engineered for biomedical applications are meant to be in
contact with protein-rich physiological fluids. These proteins are usually
adsorbed onto the NP surface, forming a swaddling layer called protein corona
that influences cell internalization. We present a study on protein adsorption
onto different magnetic NPs (MNPs) when immersed in cell culture medium, and
how these changes affect the cellular uptake. Two colloids with magnetite cores
of 25 nm, same hydrodynamic size and opposite surface charge were in situ
coated with (a) positive polyethyleneimine (PEI-MNPs) and (b) negative
poly(acrylic acid) (PAA-MNPs). After few minutes of incubation in cell culture
medium the wrapping of the MNPs by protein adsorption resulted in a 5-fold size
increase. After 24 h of incubation large MNP-protein aggregates with
hydrodynamic sizes 1500 to 3000 nm (PAA-MNPs and PEI-MNPs respectively) were
observed. Each cluster contained an estimated number of magnetic cores between
450 and 1000, indicating the formation of large aggregates with a "plum
pudding" structure of MNPs embedded into a protein network of negative surface
charge irrespective of the MNP_core charge. We demonstrated that PEI-MNPs are
incorporated in much larger amounts than the PAA-MNPs units. Quantitative
analysis showed that SH-SY5Y cells can incorporate 100 per cent of the added
PEI-MNPs up to about 100 pg per cell, whereas for PAA-MNPs the uptake was less
than 50 percent. The final cellular distribution showed also notable
differences regarding partial attachment to the cell membrane. These results
highlight the need to characterize the final properties of MNPs after protein
adsorption in biological media, and demonstrate the impact of these properties
on the internalization mechanisms in neural cells.Comment: 32 pages, 10 figure
Tree defence and bark beetles in a drying world: carbon partitioning, functioning and modelling.
Drought has promoted large-scale, insect-induced tree mortality in recent years, with severe consequences for ecosystem function, atmospheric processes, sustainable resources and global biogeochemical cycles. However, the physiological linkages among drought, tree defences, and insect outbreaks are still uncertain, hindering our ability to accurately predict tree mortality under on-going climate change. Here we propose an interdisciplinary research agenda for addressing these crucial knowledge gaps. Our framework includes field manipulations, laboratory experiments, and modelling of insect and vegetation dynamics, and focuses on how drought affects interactions between conifer trees and bark beetles. We build upon existing theory and examine several key assumptions: (1) there is a trade-off in tree carbon investment between primary and secondary metabolites (e.g. growth vs defence); (2) secondary metabolites are one of the main component of tree defence against bark beetles and associated microbes; and (3) implementing conifer-bark beetle interactions in current models improves predictions of forest disturbance in a changing climate. Our framework provides guidance for addressing a major shortcoming in current implementations of large-scale vegetation models, the under-representation of insect-induced tree mortality
On Nonlinear Bosonic Coherent States
Nonlinear coherent states are an interesting resource for quantum
technologies. Here we investigate some critical features of the single-boson
nonlinear coherent states, which are theoretically constructed as eigenstates
of the annihilation operator and experimentally realized as stationary states
of a trapped laser-driven ion. We show that the coherence and the
minimum-uncertainty properties of such states are broken for values of the
Lamb-Dicke parameter corresponding to the roots of the Laguerre polynomials,
which enter their explicit expression. The case of the multiboson nonlinear
coherent states is also discussed.Comment: published versio
In vitro characterization of mitochondrial function and structure in rat and human cells with a deficiency of the NADH:ubiquinone oxidoreductase Ndufc2 subunit
Ndufc2, a subunit of the NADH:ubiquinone oxidoreductase, plays a key role in the assembly and activity of complex I within the mitochondrial OXPHOS chain. Its deficiency has been shown to be involved in diabetes, cancer and stroke. To improve our knowledge on the mechanisms underlying the increased disease risk due to Ndufc2 reduction, we performed the present in vitro study aimed at the fine characterization of the derangements in mitochondrial structure and function consequent to Ndufc2 deficiency. We found that both fibroblasts obtained from skin of heterozygous Ndufc2 knock-out rat model showed marked mitochondrial dysfunction and PBMC obtained from subjects homozygous for the TT genotype of the rs11237379/NDUFC2 variant, previously shown to associate with reduced gene expression, demonstrated increased generation of reactive oxygen species and mitochondrial damage. The latter was associated with increased oxidative stress and significant ultrastructural impairment of mitochondrial morphology with a loss of internal cristae. In both models the exposure to stress stimuli, such as high-NaCl concentration or LPS, exacerbated the mitochondrial damage and dysfunction. Resveratrol significantly counteracted the ROS generation. These findings provide additional insights on the role of an altered pattern of mitochondrial structure-function as a cause of human diseases. In particular, they contribute to underscore a potential genetic risk factor for cardiovascular diseases, including stroke
Polaron Effects on Superexchange Interaction: Isotope Shifts of , , and in Layered Copper Oxides
A compact expression has been obtained for the superexchange coupling of
magnetic ions via intermediate anions with regard to polaron effects at both
magnetic ions and intermediate anions. This expression is used to analyze the
main features of the behavior of isotope shifts for temperatures of three types
in layered cuprates: the Neel temperatures (), critical temperatures of
transitions to a superconducting state (), and characteristic temperatures
of the pseudogap in the normal state ().Comment: 4 pages, 1 figur
Separation of quadrupolar and magnetic contributions to spin-lattice relaxation in the case of a single isotope
We present a NMR pulse double-irradiation method which allows one to separate
magnetic from quadrupolar contributions in the spin-lattice relaxation. The
pulse sequence fully saturates one transition while another is observed. In the
presence of a Delta m = 2 quadrupolar contribution, the intensity of the
observed line is altered compared to a standard spin-echo experiment. We
calculated analytically this intensity change for spins I=1, 3/2, 5/2, thus
providing a quantitative analysis of the experimental results. Since the pulse
sequence we used takes care of the absorbed radio-frequency power, no problems
due to heating arise. The method is especially suited when only one NMR
sensitive isotope is available. Different cross-checks were performed to prove
the reliability of the obtained results. The applicability of this method is
demonstrated by a study of the plane oxygen 17O (I = 5/2) in the
high-temperature superconductor YBa_2Cu_4O_8: the 17O spin-lattice relaxation
rate consists of magnetic as well as quadrupolar contributions.Comment: 7 pages, 6 figure
The inhomogeneous mechanical behaviour of Ascending Thoracic Aortic Aneurism (ATAA)
Surgical management of ascending thoracic aortic aneurysms (aTAAs) relies on maximum diameter,
growth rate, and presence of connective tissue disorders. The surgical decision however is often
not considering that dissection and rupture do occur in patients who do not meet criteria for surgical
repair [1,2]. In this study the authors aim to investigate the mechanical properties of aTAAs to be
implemented in computational biomechanics models for a preclinical risk evaluation. Additionally,
in some recent studies, some data about the biomechanical properties of the aTAAs have been reported
[3], but without any relation to bicuspidal or tricuspidal aTAA. The aim of this study was to
investigate aTAA mechanical properties using a biaxial system to compare the circumferential and
axial stress-strain relations for bicuspidal and tricuspidal aTAAs
- …
