1,703 research outputs found

    Quantum correlation dynamics in photosynthetic processes assisted by molecular vibrations

    Full text link
    During the long course of evolution, nature has learnt how to exploit quantum effects. In fact, recent experiments reveal the existence of quantum processes whose coherence extends over unexpectedly long time and space ranges. In particular, photosynthetic processes in light-harvesting complexes display a typical oscillatory dynamics ascribed to quantum coherence. Here, we consider the simple model where a dimer made of two chromophores is strongly coupled with a quasi-resonant vibrational mode. We observe the occurrence of wide oscillations of genuine quantum correlations, between electronic excitations and the environment, represented by vibrational bosonic modes. Such a quantum dynamics has been unveiled through the calculation of the negativity of entanglement and the discord, indicators widely used in quantum information for quantifying the resources needed to realize quantum technologies. We also discuss the possibility of approximating additional weakly-coupled off-resonant vibrational modes, simulating the disturbances induced by the rest of the environment, by a single vibrational mode. Within this approximation, one can show that the off-resonant bath behaves like a classical source of noise

    Where do bosons actually belong?

    Full text link
    We explore a variety of reasons for considering su(1,1) instead of the customary h(1) as the natural unifying frame for characterizing boson systems. Resorting to the Lie-Hopf structure of these algebras, that shows how the Bose-Einstein statistics for identical bosons is correctly given in the su(1,1) framework, we prove that quantization of Maxwell's equations leads to su(1,1), relativistic covariance being naturally recognized as an internal symmetry of this dynamical algebra. Moreover su(1,1) rather than h(1) coordinates are associated to circularly polarized electromagnetic waves. As for interacting bosons, the su(1,1) formulation of the Jaynes-Cummings model is discussed, showing its advantages over h(1).Comment: 9 pages, to appear in J. Phys. A: Math. Theo

    Protein adsorption onto Fe3O4 nanoparticles with opposite surface charge and its impact on cell uptake

    Full text link
    Nanoparticles (NPs) engineered for biomedical applications are meant to be in contact with protein-rich physiological fluids. These proteins are usually adsorbed onto the NP surface, forming a swaddling layer called protein corona that influences cell internalization. We present a study on protein adsorption onto different magnetic NPs (MNPs) when immersed in cell culture medium, and how these changes affect the cellular uptake. Two colloids with magnetite cores of 25 nm, same hydrodynamic size and opposite surface charge were in situ coated with (a) positive polyethyleneimine (PEI-MNPs) and (b) negative poly(acrylic acid) (PAA-MNPs). After few minutes of incubation in cell culture medium the wrapping of the MNPs by protein adsorption resulted in a 5-fold size increase. After 24 h of incubation large MNP-protein aggregates with hydrodynamic sizes 1500 to 3000 nm (PAA-MNPs and PEI-MNPs respectively) were observed. Each cluster contained an estimated number of magnetic cores between 450 and 1000, indicating the formation of large aggregates with a "plum pudding" structure of MNPs embedded into a protein network of negative surface charge irrespective of the MNP_core charge. We demonstrated that PEI-MNPs are incorporated in much larger amounts than the PAA-MNPs units. Quantitative analysis showed that SH-SY5Y cells can incorporate 100 per cent of the added PEI-MNPs up to about 100 pg per cell, whereas for PAA-MNPs the uptake was less than 50 percent. The final cellular distribution showed also notable differences regarding partial attachment to the cell membrane. These results highlight the need to characterize the final properties of MNPs after protein adsorption in biological media, and demonstrate the impact of these properties on the internalization mechanisms in neural cells.Comment: 32 pages, 10 figure

    Tree defence and bark beetles in a drying world: carbon partitioning, functioning and modelling.

    Get PDF
    Drought has promoted large-scale, insect-induced tree mortality in recent years, with severe consequences for ecosystem function, atmospheric processes, sustainable resources and global biogeochemical cycles. However, the physiological linkages among drought, tree defences, and insect outbreaks are still uncertain, hindering our ability to accurately predict tree mortality under on-going climate change. Here we propose an interdisciplinary research agenda for addressing these crucial knowledge gaps. Our framework includes field manipulations, laboratory experiments, and modelling of insect and vegetation dynamics, and focuses on how drought affects interactions between conifer trees and bark beetles. We build upon existing theory and examine several key assumptions: (1) there is a trade-off in tree carbon investment between primary and secondary metabolites (e.g. growth vs defence); (2) secondary metabolites are one of the main component of tree defence against bark beetles and associated microbes; and (3) implementing conifer-bark beetle interactions in current models improves predictions of forest disturbance in a changing climate. Our framework provides guidance for addressing a major shortcoming in current implementations of large-scale vegetation models, the under-representation of insect-induced tree mortality

    On Nonlinear Bosonic Coherent States

    Full text link
    Nonlinear coherent states are an interesting resource for quantum technologies. Here we investigate some critical features of the single-boson nonlinear coherent states, which are theoretically constructed as eigenstates of the annihilation operator and experimentally realized as stationary states of a trapped laser-driven ion. We show that the coherence and the minimum-uncertainty properties of such states are broken for values of the Lamb-Dicke parameter corresponding to the roots of the Laguerre polynomials, which enter their explicit expression. The case of the multiboson nonlinear coherent states is also discussed.Comment: published versio

    In vitro characterization of mitochondrial function and structure in rat and human cells with a deficiency of the NADH:ubiquinone oxidoreductase Ndufc2 subunit

    Get PDF
    Ndufc2, a subunit of the NADH:ubiquinone oxidoreductase, plays a key role in the assembly and activity of complex I within the mitochondrial OXPHOS chain. Its deficiency has been shown to be involved in diabetes, cancer and stroke. To improve our knowledge on the mechanisms underlying the increased disease risk due to Ndufc2 reduction, we performed the present in vitro study aimed at the fine characterization of the derangements in mitochondrial structure and function consequent to Ndufc2 deficiency. We found that both fibroblasts obtained from skin of heterozygous Ndufc2 knock-out rat model showed marked mitochondrial dysfunction and PBMC obtained from subjects homozygous for the TT genotype of the rs11237379/NDUFC2 variant, previously shown to associate with reduced gene expression, demonstrated increased generation of reactive oxygen species and mitochondrial damage. The latter was associated with increased oxidative stress and significant ultrastructural impairment of mitochondrial morphology with a loss of internal cristae. In both models the exposure to stress stimuli, such as high-NaCl concentration or LPS, exacerbated the mitochondrial damage and dysfunction. Resveratrol significantly counteracted the ROS generation. These findings provide additional insights on the role of an altered pattern of mitochondrial structure-function as a cause of human diseases. In particular, they contribute to underscore a potential genetic risk factor for cardiovascular diseases, including stroke

    Polaron Effects on Superexchange Interaction: Isotope Shifts of TNT_N, TCT_C, and TT^* in Layered Copper Oxides

    Full text link
    A compact expression has been obtained for the superexchange coupling of magnetic ions via intermediate anions with regard to polaron effects at both magnetic ions and intermediate anions. This expression is used to analyze the main features of the behavior of isotope shifts for temperatures of three types in layered cuprates: the Neel temperatures (TNT_N), critical temperatures of transitions to a superconducting state (TCT_C), and characteristic temperatures of the pseudogap in the normal state (TT^*).Comment: 4 pages, 1 figur

    Separation of quadrupolar and magnetic contributions to spin-lattice relaxation in the case of a single isotope

    Full text link
    We present a NMR pulse double-irradiation method which allows one to separate magnetic from quadrupolar contributions in the spin-lattice relaxation. The pulse sequence fully saturates one transition while another is observed. In the presence of a Delta m = 2 quadrupolar contribution, the intensity of the observed line is altered compared to a standard spin-echo experiment. We calculated analytically this intensity change for spins I=1, 3/2, 5/2, thus providing a quantitative analysis of the experimental results. Since the pulse sequence we used takes care of the absorbed radio-frequency power, no problems due to heating arise. The method is especially suited when only one NMR sensitive isotope is available. Different cross-checks were performed to prove the reliability of the obtained results. The applicability of this method is demonstrated by a study of the plane oxygen 17O (I = 5/2) in the high-temperature superconductor YBa_2Cu_4O_8: the 17O spin-lattice relaxation rate consists of magnetic as well as quadrupolar contributions.Comment: 7 pages, 6 figure

    The inhomogeneous mechanical behaviour of Ascending Thoracic Aortic Aneurism (ATAA)

    Get PDF
    Surgical management of ascending thoracic aortic aneurysms (aTAAs) relies on maximum diameter, growth rate, and presence of connective tissue disorders. The surgical decision however is often not considering that dissection and rupture do occur in patients who do not meet criteria for surgical repair [1,2]. In this study the authors aim to investigate the mechanical properties of aTAAs to be implemented in computational biomechanics models for a preclinical risk evaluation. Additionally, in some recent studies, some data about the biomechanical properties of the aTAAs have been reported [3], but without any relation to bicuspidal or tricuspidal aTAA. The aim of this study was to investigate aTAA mechanical properties using a biaxial system to compare the circumferential and axial stress-strain relations for bicuspidal and tricuspidal aTAAs
    corecore