18 research outputs found

    Characterization of 81P/Wild 2 Particles C2067,1,111,6.0 and C2067,1,111,8.0

    Get PDF
    The concentrations of C and N in cometary particles are of interest in characterizing the regions where comets formed. One aim of this work is to analyze enough Stardust particles to draw meaningful statistical conclusions about their inventories of C and N. Toward that end we report recent studies of Stardust particles and related materials

    C/N and other Elemental Ratios of Chondritic Porous IDPS and a Fluffy Concordia Micrometeorite

    Get PDF
    Chondritic porous interplanetary dust particles (CP-IDPs) may be cometary in origin [1], as may ultracarbona-ceous (UCAMMs) [2] and 'fluffy' [3] micrometeorites from the Concordia collection. They are all rich in organics, which can rim grains and may have helped glue grains together during accretion [4]. The organics also contain nitrogen the input of which to Earth has potential biological importance. We report C/N ratios, and other properties of CP-IDPs and a Concordia fluffy microme-teorite

    Extraterrestrial materials examined by mean of nuclear microprobe

    No full text
    Comet fragments, micrometeorites, and Interplanetary Dust Particles (IDPs) are small objects (<1 mm) of high scientific interest in cosmochemistry. More particularly, the determination of light element concentrations, such as C and N, in cometary samples is of interest since it gives information on the regions where such materials formed. Analyses of such objects should be performed so as to extract as much information as possible while preserving sample integrity. For this purpose, we need instruments and methods that provide both microanalysis and detailed imaging. In these respects, the nuclear microprobe offers many potential advantages: (i) the spatial resolution, ∼ 1μm is well-matched to the typical object dimensions, (ii) with some reservations, it is non-destructive when carefully conducted, (iii) it is quantitative, and especially sensitive for light elements. At the Saclay nuclear microprobe, we have been performing analyses of extraterrestrial objects for many years. We review some of these studies, emphasizing the specific requirements for successful analyses. We also discuss the potential pitfalls that may be encountered

    Development of a device for helium thermal diffusion investigations by IBA in self-irradiated nuclear glass

    No full text
    International audienceAbstract To minimize the amount of nuclear waste issuing from the nuclear power plants, the solution adopted in France consists in the reprocessing of spent fuel to isolate long lived and high level radioactive waste (minor actinides and fission products). They are incorporated into a glassy matrix in order to be placed in dedicated long-term disposal repository. The confinement of the radioelements depends strongly on the integrity of the glassy matrix which could be damaged by the radiations and the generation of helium produced by α-decays of the minor actinides. In the past few years, several studies were conducted in order to understand the behaviour of helium, especially its thermal diffusion into the glassy matrix [1–3]. However none were conducted on self-irradiated samples and a validation on radioactive glasses and in the temperature range of the repository conditions is still needed. For this purpose, a specific setup was developed on the analysis chamber of the nuclear microprobe dedicated to radioactive samples in Saclay [4]. The temperature of the sample is controlled during all the experiment, in the range from 143 to 323 K; 3He ions are implanted at low temperature. Helium profiles are measured at low temperature using the 3He(d,p)4He reaction, as-implanted and after several stages of annealing. We will present the developed setup and show the preliminary results of the measurements made on non-active samples

    Xenon and iodine behaviour in magmas

    No full text
    International audienceIodine (I) and xenon (Xe) are two key elements that trace Earth's differentiation (e.g. atmosphere formation) and dynamics (e.g. volcanism and recycling at subduction zones). Iodine and Xe abundances are linked through the decay of the extinct 129I that produced 129Xe, which is today depleted in the Earth's atmosphere compared to the composition of the solar system (i.e. chondrites). Iodine and Xe cycles and storage in the deep Earth are almost unknown, which is in large part due to the fact that their behaviour in magmas and fluids, key agents of mass transfer through planetary envelopes, are poorly known. Here, the solubility of Xe and I in melts is measured under high pressure (P) and temperature (T) conditions using large volume presses, and Xe and I behaviour in melts and fluids is monitored in situ under high P-T conditions using resistive heating diamond anvil cells combined with synchrotron x-ray fluorescence (XRF) and Raman spectroscopy. Xenon, I and H (H2O) contents were measured in quenched glasses by particle x-ray Emission (PIXE) and Elastic Recoil Detection Analysis (ERDA). Solubility, speciation and degassing processes are investigated for two different compositions: haplogranitic melt (HPG analogue for crustal melts) and basaltic melts (MORB and IAB). Experimentally measured solubilities for both elements are much higher than their natural abundances in terrestrial magmas. Xenon solubility at 3.5 GPa reaches 4.00 wt.% in HPG and 0.40 wt.% in basalts. Iodine solubility is 0.46 wt.% at 0.4 GPa on average in HPG, and reaches 1.42 wt.% in basalts at 2 GPa. The in situ Raman spectroscopic study shows that I forms I-I bonds in hydrous high P fluids/melts unlike Xe that was previously shown to oxidize in high P melts. The XRF monitoring of I and Xe partitioning between aqueous fluids and silicate melts during decompression (i.e. water degassing) shows that Xe degassing is strongly P-T dependent and can be retained in the melt at deep crust conditions, while I is totally washed out from the silicate melt by the aqueous phase. Xenon and I degassing processes are based on different mechanisms, which implies that the atmospheric isotopic signature of Xe cannot be inherited from a process involving volcanic water degassing. Instead, 129Xe depletion may originate from a separation of both elements at depth, by deep fluids, a proposition that agrees with a deep storage of Xe in mineral
    corecore