
C/N AND OTHER ELEMENTAL RATIOS OF CHONDRITIC POROUS IDPS AND A FLUFFY CONCORDIA MICROMETEORITE

T. Smith^{1,2}, K. Nakamura-Messenger³, S. Messenger³, L.P. Keller³, H. Khodja¹, C. Raepsaet¹, S. Wirick⁴, G.J. Flynn⁵, S. Taylor⁶, C. Engrand⁷, J. Duprat⁷, and G.F. Herzog⁸. ¹CEA Saclay, France, ²U. Bern, Bern, Switzerland, ³NASA-JSC, Houston, TX 77058, ⁴CARS, U. Chicago, Chicago, IL 60637, ⁵SUNY Plattsburgh, NY 12901, ⁶CRREL, Hanover, NH, 03755-1290, ⁷CSNSM CNRS/U. Paris Sud, Orsay, France, ⁸Rutgers U. Piscataway NJ 08854.

Introduction: Chondritic porous interplanetary dust particles (CP-IDPs) may be cometary in origin [1], as may ultracarbonaceous (UCAMMs) [2] and 'fluffy' [3] micrometeorites from the Concordia collection. They are all rich in organics, which can rim grains and may have helped glue grains together during accretion [4]. The organics also contain nitrogen the input of which to Earth has potential biological importance. We report C/N ratios, and other properties of CP-IDPs and a Concordia fluffy micrometeorite.

Experimental Methods: Three cluster IDPs were obtained: L2036AW1-4 (originally 10 μ m) from cluster #4, L2036AX1-10 (14 μ m) from cluster #10 and L2036AY1-9 (15 μ m) from cluster #9 [6]. After IR spectroscopy, samples were potted in S, microtomed, and pressed into high-purity indium for SEM/EDX, synchrotron-XRF (SXRF), and nuclear reaction analysis (NRA). One split of Concordia particle DC06-05-15 (originally ~50 μ m) was taken for classification by SEM/EDX and another for NRA.

Results: We observed little or no NRA signal from sample AY1; evidently most of it was lost. AX1-10 has two carbonaceous domains with distinct C/N ratios (atom), 29.7 ± 1.4 and 2.9 ± 0.4 . The whole-particle C/N ratio is 9.5 ± 0.6 . Higher count rates (green) in central areas reflect greater particle thickness. C and O maps for AW1 and DC06 are more uniform; the respective C/N ratios of 16.6 ± 2.6 and 14.0 ± 2.0 lie between the bulk CI and CM ratios of 12.7 and 16.9 [7], and in the UCAMM range of 7-20 [2], but are distinctly lower than the unheated ratios, >25, for insoluble organic meteorite residues [8]. EDX spectra indicate a sulfide grain in AX1 and suggest the presence of pyroxenes in both AX1 and AW1. SXRF on AW1 gave a CI-like pattern, with CI-normalized Cr/Fe=0.64; Mn/Fe=0.66; and Ni/Fe=0.98.

References: [1] Brownlee D. et al. (1995) *LPS 26*, 183-184. [2] Dartois E. et al., (2013) *Icarus 224*, 243-253. [3] Dobrică E. et al. (2009) *MPS 44*, 1643-1661. [5] Flynn G. et al. (2010) *LPS* 1079.pdf. [6] Nakamura-Messenger K. (2012) *MPS 75*, 5325.pdf. [6] Matrajt G. et al. (2013) *GCA*, in press. [7] Lodders K. & Fegley B. (1998) *Planet. Scientist's Companion*. [8] Alexander C.M.O'D. et al. (2007) *GCA 71*, 4380-4403.