185 research outputs found

    The association between socio-demographic characteristics and adherence to breast and colorectal cancer screening: Analysis of large sub populations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Populations having lower socioeconomic status, as well as ethnic minorities, have demonstrated lower utilization of preventive screening, including tests for early detection of breast and colorectal cancer.</p> <p>The objective</p> <p>To explore socio-demographic disparities in adherence to screening recommendations for early detection of cancer.</p> <p>Methods</p> <p>The study was conducted by Maccabi Healthcare Services, an Israeli HMO (health plan) providing healthcare services to 1.9 million members. Utilization of breast cancer (BC) and colorectal cancer (CC) screening were analyzed by socio-economic ranks (SERs), ethnicity (Arab vs non-Arab), immigration status and ownership of voluntarily supplemental health insurance (VSHI).</p> <p>Results</p> <p>Data on 157,928 and 303,330 adults, eligible for BC and CC screening, respectively, were analyzed. Those having lower SER, Arabs, immigrants from Former Soviet Union countries and non-owners of VSHI performed fewer cancer screening examinations compared with those having higher SER, non-Arabs, veterans and owners of VSHI (p < 0.001). Logistic regression model for BC Screening revealed a positive association with age and ownership of VSHI and a negative association with being an Arab and having a lower SER. The model for CC screening revealed a positive association with age and ownership of VSHI and a negative association with being an Arab, having a lower SER and being an immigrant. The model estimated for BC and CC screening among females revealed a positive association with age and ownership of VSHI and a negative association with being an Arab, having a lower SER and being an immigrant.</p> <p>Conclusion</p> <p>Patients from low socio-economic backgrounds, Arabs, immigrants and those who do not own supplemental insurance do fewer tests for early detection of cancer. These sub-populations should be considered priority populations for targeted intervention programs and improved resource allocation.</p

    The identification of informative genes from multiple datasets with increasing complexity

    Get PDF
    Background In microarray data analysis, factors such as data quality, biological variation, and the increasingly multi-layered nature of more complex biological systems complicates the modelling of regulatory networks that can represent and capture the interactions among genes. We believe that the use of multiple datasets derived from related biological systems leads to more robust models. Therefore, we developed a novel framework for modelling regulatory networks that involves training and evaluation on independent datasets. Our approach includes the following steps: (1) ordering the datasets based on their level of noise and informativeness; (2) selection of a Bayesian classifier with an appropriate level of complexity by evaluation of predictive performance on independent data sets; (3) comparing the different gene selections and the influence of increasing the model complexity; (4) functional analysis of the informative genes. Results In this paper, we identify the most appropriate model complexity using cross-validation and independent test set validation for predicting gene expression in three published datasets related to myogenesis and muscle differentiation. Furthermore, we demonstrate that models trained on simpler datasets can be used to identify interactions among genes and select the most informative. We also show that these models can explain the myogenesis-related genes (genes of interest) significantly better than others (P < 0.004) since the improvement in their rankings is much more pronounced. Finally, after further evaluating our results on synthetic datasets, we show that our approach outperforms a concordance method by Lai et al. in identifying informative genes from multiple datasets with increasing complexity whilst additionally modelling the interaction between genes. Conclusions We show that Bayesian networks derived from simpler controlled systems have better performance than those trained on datasets from more complex biological systems. Further, we present that highly predictive and consistent genes, from the pool of differentially expressed genes, across independent datasets are more likely to be fundamentally involved in the biological process under study. We conclude that networks trained on simpler controlled systems, such as in vitro experiments, can be used to model and capture interactions among genes in more complex datasets, such as in vivo experiments, where these interactions would otherwise be concealed by a multitude of other ongoing events

    A retrospective analysis of glycol and toxic alcohol ingestion: utility of anion and osmolal gaps

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Patients ingesting ethylene glycol, isopropanol, methanol, and propylene glycol ('toxic alcohols') often present with non-specific signs and symptoms. Definitive diagnosis of toxic alcohols has traditionally been by gas chromatography (GC), a technique not commonly performed on-site in hospital clinical laboratories. The objectives of this retrospective study were: 1) to assess the diagnostic accuracy of the osmolal gap in screening for toxic alcohol ingestion and 2) to determine the common reasons other than toxic alcohol ingestion for elevated osmolal gaps.</p> <p>Methods</p> <p>Electronic medical records from an academic tertiary care medical center were searched to identify all patients in the time period from January 1, 1996 to September 1, 2010 who had serum/plasma ethanol, glucose, sodium, blood urea nitrogen, and osmolality measured simultaneously, and also all patients who had GC analysis for toxic alcohols. Detailed chart review was performed on all patients with osmolal gap of 9 or greater.</p> <p>Results</p> <p>In the study period, 20,669 patients had determination of serum/plasma ethanol and osmolal gap upon presentation to the hospitals. There were 341 patients with an osmolal gap greater than 14 (including correction for estimated contribution of ethanol) on initial presentation to the medical center. Seventy-seven patients tested positive by GC for one or more toxic alcohols; all had elevated anion gap or osmolal gap or both. Other than toxic alcohols, the most common causes for an elevated osmolal gap were recent heavy ethanol consumption with suspected alcoholic ketoacidosis, renal failure, shock, and recent administration of mannitol. Only 9 patients with osmolal gap greater than 50 and no patients with osmolal gap greater than 100 were found to be negative for toxic alcohols.</p> <p>Conclusions</p> <p>Our study concurs with other investigations that show that osmolal gap can be a useful diagnostic test in conjunction with clinical history and physical examination.</p

    Patient- and system-related barriers for the earlier diagnosis of colorectal cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A cohort of colorectal cancer (CRC) patients represents an opportunity to study missed opportunities for earlier diagnosis. Primary objective: To study the epidemiology of diagnostic delays and failures to offer/complete CRC screening. Secondary objective: To identify system- and patient-related factors that may contribute to diagnostic delays or failures to offer/complete CRC screening.</p> <p>Methods</p> <p>Setting: Rural Veterans Administration (VA) Healthcare system. Participants: CRC cases diagnosed within the VA between 1/1/2000 and 3/1/2007. Data sources: progress notes, orders, and pathology, laboratory, and imaging results obtained between 1/1/1995 and 12/31/2007. Completed CRC screening was defined as a fecal occult blood test or flexible sigmoidoscopy (both within five years), or colonoscopy (within 10 years); delayed diagnosis was defined as a gap of more than six months between an abnormal test result and evidence of clinician response. A summary abstract of the antecedent clinical care for each patient was created by a certified gastroenterologist (GI), who jointly reviewed and coded the abstracts with a general internist (TW).</p> <p>Results</p> <p>The study population consisted of 150 CRC cases that met the inclusion criteria. The mean age was 69.04 (range 35-91); 99 (66%) were diagnosed due to symptoms; 61 cases (46%) had delays associated with system factors; of them, 57 (38% of the total) had delayed responses to abnormal findings. Fifteen of the cases (10%) had prompt symptom evaluations but received no CRC screening; no patient factors were identified as potentially contributing to the failure to screen/offer to screen. In total, 97 (65%) of the cases had missed opportunities for early diagnosis and 57 (38%) had patient factors that likely contributed to the diagnostic delay or apparent failure to screen/offer to screen.</p> <p>Conclusion</p> <p>Missed opportunities for earlier CRC diagnosis were frequent. Additional studies of clinical data management, focusing on following up abnormal findings, and offering/completing CRC screening, are needed.</p

    A Single Molecule Scaffold for the Maize Genome

    Get PDF
    About 85% of the maize genome consists of highly repetitive sequences that are interspersed by low-copy, gene-coding sequences. The maize community has dealt with this genomic complexity by the construction of an integrated genetic and physical map (iMap), but this resource alone was not sufficient for ensuring the quality of the current sequence build. For this purpose, we constructed a genome-wide, high-resolution optical map of the maize inbred line B73 genome containing >91,000 restriction sites (averaging 1 site/∼23 kb) accrued from mapping genomic DNA molecules. Our optical map comprises 66 contigs, averaging 31.88 Mb in size and spanning 91.5% (2,103.93 Mb/∼2,300 Mb) of the maize genome. A new algorithm was created that considered both optical map and unfinished BAC sequence data for placing 60/66 (2,032.42 Mb) optical map contigs onto the maize iMap. The alignment of optical maps against numerous data sources yielded comprehensive results that proved revealing and productive. For example, gaps were uncovered and characterized within the iMap, the FPC (fingerprinted contigs) map, and the chromosome-wide pseudomolecules. Such alignments also suggested amended placements of FPC contigs on the maize genetic map and proactively guided the assembly of chromosome-wide pseudomolecules, especially within complex genomic regions. Lastly, we think that the full integration of B73 optical maps with the maize iMap would greatly facilitate maize sequence finishing efforts that would make it a valuable reference for comparative studies among cereals, or other maize inbred lines and cultivars

    Spin transport and spin torque in antiferromagnetic devices

    Get PDF
    Ferromagnets are key materials for sensing and memory applications. In contrast, antiferromagnets which represent the more common form of magnetically ordered materials, have found less practical application beyond their use for establishing reference magnetic orientations via exchange bias. This might change in the future due to the recent progress in materials research and discoveries of antiferromagnetic spintronic phenomena suitable for device applications. Experimental demonstration of the electrical switching and detection of the Néel order open a route towards memory devices based on antiferromagnets. Apart from the radiation and magnetic-field hardness, memory cells fabricated from antiferromagnets can be inherently multilevel, which could be used for neuromorphic computing. Switching speeds attainable in antiferromagnets far exceed those of ferromagnetic and semiconductor memory technologies. Here we review the recent progress in electronic spin-transport and spin-torque phenomena in antiferromagnets that are dominantly of the relativistic quantum mechanical origin. We discuss their utility in pure antiferromagnetic or hybrid ferromagnetic/antiferromagnetic memory devices

    A Conserved Role for Syndecan Family Members in the Regulation of Whole-Body Energy Metabolism

    Get PDF
    Syndecans are a family of type-I transmembrane proteins that are involved in cell-matrix adhesion, migration, neuronal development, and inflammation. Previous quantitative genetic studies pinpointed Drosophila Syndecan (dSdc) as a positional candidate gene affecting variation in fat storage between two Drosophila melanogaster strains. Here, we first used quantitative complementation tests with dSdc mutants to confirm that natural variation in this gene affects variability in Drosophila fat storage. Next, we examined the effects of a viable dSdc mutant on Drosophila whole-body energy metabolism and associated traits. We observed that young flies homozygous for the dSdc mutation had reduced fat storage and slept longer than homozygous wild-type flies. They also displayed significantly reduced metabolic rate, lower expression of spargel (the Drosophila homologue of PGC-1), and reduced mitochondrial respiration. Compared to control flies, dSdc mutants had lower expression of brain insulin-like peptides, were less fecund, more sensitive to starvation, and had reduced life span. Finally, we tested for association between single nucleotide polymorphisms (SNPs) in the human SDC4 gene and variation in body composition, metabolism, glucose homeostasis, and sleep traits in a cohort of healthy early pubertal children. We found that SNP rs4599 was significantly associated with resting energy expenditure (P = 0.001 after Bonferroni correction) and nominally associated with fasting glucose levels (P = 0.01) and sleep duration (P = 0.044). On average, children homozygous for the minor allele had lower levels of glucose, higher resting energy expenditure, and slept shorter than children homozygous for the common allele. We also observed that SNP rs1981429 was nominally associated with lean tissue mass (P = 0.035) and intra-abdominal fat (P = 0.049), and SNP rs2267871 with insulin sensitivity (P = 0.037). Collectively, our results in Drosophila and humans argue that syndecan family members play a key role in the regulation of body metabolism

    Transcription-replication conflicts: How they occur and how they are resolved

    Get PDF
    The frequent occurrence of transcription and DNA replication in cells results in many encounters, and thus conflicts, between the transcription and replication machineries. These conflicts constitute a major intrinsic source of genome instability, which is a hallmark of cancer cells. How the replication machinery progresses along a DNA molecule occupied by an RNA polymerase is an old question. Here we review recent data on the biological relevance of transcription-replication conflicts, and the factors and mechanisms that are involved in either preventing or resolving them, mainly in eukaryotes. On the basis of these data, we provide our current view of how transcription can generate obstacles to replication, including torsional stress and non-B DNA structures, and of the different cellular processes that have evolved to solve them
    corecore