33 research outputs found

    Chromosome 9p21 gene copy number and prognostic significance of p16 in ESFT

    Get PDF
    Chromosome 9p21 gene copy number in Ewing's sarcoma family of tumour (ESFT) cell lines and primary ESFT has been evaluated using Multiplex Ligation-dependent probe amplification, and the clinical significance of CDKN2A loss and p16/p14ARF expression investigated. Homozygous deletion of CDKN2A was identified in 4/9 (44%) of ESFT cell lines and 4/42 (10%) primary ESFT; loss of one copy of CDKN2A was identified in a further 2/9 (22%) cell lines and 2/42 (5%) tumours. CDKN2B was co-deleted in three (33%) cell lines and two (5%) tumours. Co-deletion of the MTAP gene was observed in 1/9 (11%) cell lines and 3/42 (7%) tumours. No correlation was observed between CDKN2A deletion and clinical parameters. However, co-expression of high levels of p16/p14ARF mRNA predicted a poor event-free survival (P=0.046, log-rank test). High levels of p16/p14ARF mRNA did not correlate with high expression of p16 protein. Furthermore, p16 protein expression did not predict event-free or overall survival. Methylation is not a common mechanism of p16 gene silencing in ESFT. These studies demonstrate that loss (homozygous deletion or single copy) of CDKN2A was not prognostically significant in primary ESFT. However, high levels of p16/p14ARF mRNA expression were predictive of a poor event-free survival and should be investigated further

    PI3Ks Maintain the Structural Integrity of T-Tubules in Cardiac Myocytes

    Get PDF
    Phosphoinositide 3-kinases (PI3Ks) regulate numerous physiological processes including some aspects of cardiac function. Although regulation of cardiac contraction by individual PI3K isoforms has been studied, little is known about the cardiac consequences of downregulating multiple PI3Ks concurrently.Genetic ablation of both p110α and p110β in cardiac myocytes throughout development or in adult mice caused heart failure and death. Ventricular myocytes from double knockout animals showed transverse tubule (T-tubule) loss and disorganization, misalignment of L-type Ca(2+) channels in the T-tubules with ryanodine receptors in the sarcoplasmic reticulum, and reduced Ca(2+) transients and contractility. Junctophilin-2, which is thought to tether T-tubules to the sarcoplasmic reticulum, was mislocalized in the double PI3K-null myocytes without a change in expression level.PI3K p110α and p110β are required to maintain the organized network of T-tubules that is vital for efficient Ca(2+)-induced Ca(2+) release and ventricular contraction. PI3Ks maintain T-tubule organization by regulating junctophilin-2 localization. These results could have important medical implications because several PI3K inhibitors that target both isoforms are being used to treat cancer patients in clinical trials

    Bacteria-inducing legume nodules involved in the improvement of plant growth, health and nutrition

    Get PDF
    Bacteria-inducing legume nodules are known as rhizobia and belong to the class Alphaproteobacteria and Betaproteobacteria. They promote the growth and nutrition of their respective legume hosts through atmospheric nitrogen fixation which takes place in the nodules induced in their roots or stems. In addition, rhizobia have other plant growth-promoting mechanisms, mainly solubilization of phosphate and production of indoleacetic acid, ACC deaminase and siderophores. Some of these mechanisms have been reported for strains of rhizobia which are also able to promote the growth of several nonlegumes, such as cereals, oilseeds and vegetables. Less studied are the mechanisms that have the rhizobia to promote the plant health; however, these bacteria are able to exert biocontrol of some phytopathogens and to induce the plant resistance. In this chapter, we revised the available data about the ability of the legume nodule-inducing bacteria for improving the plant growth, health and nutrition of both legumes and nonlegumes. These data showed that rhizobia meet all the requirements of sustainable agriculture to be used as bio-inoculants allowing the total or partial replacement of chemicals used for fertilization or protection of crops

    A Patterning-Based Strain Engineering for Sub-22 nm Node FinFETs

    No full text
    We propose a strain engineering approach that is based on the patterning and under etching of fins using strained Si grown on SiGe strain relaxed buffers. The method enhances the strain of the patterned Fins up to similar to 2.9 GPa without the need of epitaxial source and drain stressors. We report a systematic simulation study on the scaling of this method for the present and future technology nodes down to 7 nm. Finally, we estimate that the technique deliveries an electron mobility enhancement up to 87% for FinFETs, independent of the technology node.353300302Swiss National Science Foundation [10 130181]Swiss National Science Foundation [10 130181

    Characterization of a n+3C/n-4H SiC heterojunction diode

    No full text
    We report on the fabrication of n+3C/n-4H SiC heterojunction diodes (HJDs) potentially promising the ultimate thermal stability of the junction. The diodes were systematically analyzed by TEM, X-ray diffraction, AFM, and secondary ion mass spectroscopy, indicating the formation of epitaxial 3C-SiC crystal on top of 4H-SiC substrate with continuous interface, low surface roughness, and up to similar to 7 x 10(17) cm(-3) dopant impurity concentration. The conduction band off-set is about 1 V as extracted from CV measurements, while the valence bands of both SiC polytypes are aligned. The HJDs feature opening voltage of 1.65 V, consistent with the barrier height of about 1.5 eV extracted from CV measurement. We finally compare the electrical results of the n+3C/n-4H SiC heterojunction diodes with those featuring Si and Ge doped anodes in order to evaluate current challenges involved in the fabrication of such devices.status: publishe
    corecore